我有数千个时间序列(24维数据-一天中的每个小时为1维)。在这些时间序列中,我对看起来像这样的特定子序列或模式感兴趣:
我对与突出显示部分的整体形状相似的子序列感兴趣-即,子序列具有陡峭的负斜率,然后是几个小时的时间段,其中斜率相对平坦,直到最终结束带有明显的正斜率。我知道我感兴趣的子序列不会完全匹配,并且很可能会随时间推移,缩放比例不同,斜率相对平坦的时间段较长/较短等,但是我想找到一种将它们全部检测出来的方法。
为此,我开发了一个简单的启发式算法(基于我对突出显示部分的定义),可以快速找到一些感兴趣的子序列。但是,我想知道是否有一种更优雅的方法(在Python中)搜索我感兴趣的子序列的数千个时间序列(同时考虑到上述问题-时间,比例等方面的差异)。 )?
下面的功能应该做;用直观的变量和方法名称编写的代码,并且在某些阅读中应该是不言自明的。最后,该代码高效且可扩展。
功能:
示例:
import numpy as np
import matplotlib.pyplot as plt
# Toy data
t = np.array([[ 5, 3, 3, 5, 3, 3, 3, 3, 3, 5, 5, 3, 3, 0, 4,
1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 0, 3, 3,
5, 5, 3, 3, 3, 3, 3, 5, 7, 3, 3, 5]]).T
plt.plot(t)
plt.show()
# Get flatline indices
indices = get_flatline_indices(t, min_len=4, max_len=5)
plt.plot(t)
for idx in indices:
plt.plot(idx, t[idx], marker='o', color='r')
plt.show()
# Filter by edge slopes
lims_left = (-10, -2)
lims_right = (2, 10)
averaging_intervals = [1, 2, 3]
indices_filtered = filter_by_edge_slopes(indices, t, lims_left, lims_right,
averaging_intervals)
plt.plot(t)
for idx in indices_filtered:
plt.plot(idx, t[idx], marker='o', color='r')
plt.show()
def get_flatline_indices(sequence, min_len=2, max_len=6):
indices=[]
elem_idx = 0
max_elem_idx = len(sequence) - min_len
while elem_idx < max_elem_idx:
current_elem = sequence[elem_idx]
next_elem = sequence[elem_idx+1]
flatline_len = 0 # min possible len
if current_elem == next_elem:
while current_elem == next_elem:
flatline_len += 1
next_elem = sequence[elem_idx + flatline_len]
if flatline_len >= min_len:
if flatline_len > max_len:
flatline_len = max_len
trim_start = elem_idx
trim_end = trim_start + flatline_len
indices_to_append = [index for index in range(trim_start, trim_end)]
indices += indices_to_append
elem_idx += flatline_len
flatline_len = 0
else:
elem_idx += 1
return indices if not all([(entry == []) for entry in indices]) else []
def filter_by_edge_slopes(indices, data, lims_left, lims_right,
averaging_intervals=1):
indices_filtered = []
indices_temp = []
tails_temp = []
got_left, got_right = False, False
for idx in indices:
slopes_left, slopes_right = _get_slopes(data, idx, averaging_intervals)
for tail_left, slope_left in enumerate(slopes_left):
if _valid_slope(slope_left, lims_left):
if got_left:
indices_temp = [] # discard prev if twice in a row
tails_temp.pop(-1)
indices_temp.append(idx)
tails_temp.append(tail_left + 1)
got_left = True
if got_left:
for edge_right, slope_right in enumerate(slopes_right):
if _valid_slope(slope_right, lims_right):
if got_right:
indices_temp.pop(-1)
tails_temp.pop(-1)
indices_temp.append(idx)
tails_temp.append(edge_right + 1)
got_right = True
if got_left and got_right:
left_append = indices_temp[0] - tails_temp[0]
right_append = indices_temp[1] + tails_temp[1]
indices_filtered.append(_fill_range(left_append, right_append))
indices_temp = []
tails_temp = []
got_left, got_right = False, False
return indices_filtered
def _get_slopes(data, idx, averaging_intervals):
if type(averaging_intervals) == int:
averaging_intervals = [averaging_intervals]
slopes_left, slopes_right = [], []
for interval in averaging_intervals:
slopes_left += [(data[idx] - data[idx-interval]) / interval]
slopes_right += [(data[idx+interval] - data[idx]) / interval]
return slopes_left, slopes_right
def _valid_slope(slope, lims):
min_slope, max_slope = lims
return (slope >= min_slope) and (slope <= max_slope)
def _iterative_average(_list):
averages = []
for i in range(1, len(_list) + 1):
averages.append(np.mean(_list[:i]))
return averages
def _fill_range(_min, _max):
return [i for i in range(_min, _max + 1)]