我对 C++ 和 ONNX 相当陌生,我需要为 ONNX C++ 推理建立随机森林模型。 我按照 youtube 上的教程进行操作:https://www.youtube.com/watch?v=exsgNLf-MyY 并重现代码如下。到目前为止,构建得很好。没有返回错误。 我的随机森林有 5 个输入和 4 个输出。 当我打开我的应用程序时,它不会进行计算,而只会留下“模型加载成功”消息。需要支持。
#include "Linear.h"
#include <onnxruntime_cxx_api.h>
#include <array>
#include <iostream>
using namespace std;
void Demo::RunLinearRegression()
{
// gives access to the underlying API (you can optionally customize log)
// you can create one environment per process (each environment manages an internal thread pool)
Ort::Env env;
Ort::Session session{ env, L"C:\\data\\RF.onnx", Ort::SessionOptions{}};
std::cout << "Model Loaded Successfully!\n";
system("PAUSE");
// Ort::Session gives access to input and output information:
// - counts
// - name
// - shape and type
std::cout << "Number of model inputs: " << session.GetInputCount() << "\n";
std::cout << "Number of model outputs: " << session.GetOutputCount() << "\n";
// you can customize how allocation works. Let's just use a default allocator provided by the library
Ort::AllocatorWithDefaultOptions allocator;
// get input and output names
auto* inputName = session.GetInputName(0, allocator);
std::cout << "Input name: " << inputName << "\n";
auto* outputName = session.GetOutputName(0, allocator);
std::cout << "Output name: " << outputName << "\n";
// get input shape
auto inputShape = session.GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
// set some input values
std::vector<float> inputValues = { 2, 3, 4, 5, 6 };
// where to allocate the tensors
auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
// create the input tensor (this is not a deep copy!)
auto inputOnnxTensor = Ort::Value::CreateTensor<float>(memoryInfo,
inputValues.data(), inputValues.size(),
inputShape.data(), inputShape.size());
// the API needs the array of inputs you set and the array of outputs you get
std::vector<const char*> inputNames = { inputName };
std::vector<const char*> outputNames = { outputName };
// finally run the inference!
auto outputValues = session.Run(
Ort::RunOptions{ nullptr }, // e.g. set a verbosity level only for this run
inputNames.data(), &inputOnnxTensor, 5, // input to set
outputNames.data(), 4); // output to take
// extract first (and only) output
auto& output1 = outputValues[0];
const auto* floats = output1.GetTensorMutableData<float>();
const auto floatsCount = output1.GetTensorTypeAndShapeInfo().GetElementCount();
// just print the output values
std::copy_n(floats, floatsCount, ostream_iterator<float>(cout, " "));
// closing boilerplate
allocator.Free(inputName);
allocator.Free(outputName);
}
Run() 调用期间会发生什么?应用程序会崩溃吗?
由于系统(“PAUSE”),推理被卡住了
std::cout << "Model Loaded Successfully!\n";
system("PAUSE");
系统停留在该声明上并且没有前进
请使用断点或调试器, 给定的线程会告诉你为什么不应该 系统(“暂停”); - 为什么错了?