我想在spark中读取CSV并将其转换为DataFrame并使用df.registerTempTable("table_name")
将其存储在HDFS中
scala> val df = sqlContext.load("hdfs:///csv/file/dir/file.csv")
java.lang.RuntimeException: hdfs:///csv/file/dir/file.csv is not a Parquet file. expected magic number at tail [80, 65, 82, 49] but found [49, 59, 54, 10]
at parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:418)
at org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache$$anonfun$refresh$6.apply(newParquet.scala:277)
at org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache$$anonfun$refresh$6.apply(newParquet.scala:276)
at scala.collection.parallel.mutable.ParArray$Map.leaf(ParArray.scala:658)
at scala.collection.parallel.Task$$anonfun$tryLeaf$1.apply$mcV$sp(Tasks.scala:54)
at scala.collection.parallel.Task$$anonfun$tryLeaf$1.apply(Tasks.scala:53)
at scala.collection.parallel.Task$$anonfun$tryLeaf$1.apply(Tasks.scala:53)
at scala.collection.parallel.Task$class.tryLeaf(Tasks.scala:56)
at scala.collection.parallel.mutable.ParArray$Map.tryLeaf(ParArray.scala:650)
at scala.collection.parallel.AdaptiveWorkStealingTasks$WrappedTask$class.compute(Tasks.scala:165)
at scala.collection.parallel.AdaptiveWorkStealingForkJoinTasks$WrappedTask.compute(Tasks.scala:514)
at scala.concurrent.forkjoin.RecursiveAction.exec(RecursiveAction.java:160)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
在Apache Spark中将CSV文件作为DataFrame加载的正确命令是什么?
spark-csv是Spark核心功能的一部分,不需要单独的库。所以你可以这样做
df = spark.read.format("csv").option("header", "true").load("csvfile.csv")
在scala中,(这适用于任何格式 - 分隔符提及“,”对于csv,“\ t”对于tsv等)val df = sqlContext.read.format("com.databricks.spark.csv")
.option("delimiter", ",")
.load("csvfile.csv")
默认文件格式是Parquet with spark.read ..和文件读取csv,说明你获得异常的原因。使用您尝试使用的api指定csv格式
加载CSV文件并将结果作为DataFrame返回。
For non-hdfs file:
df = spark.read.csv("file:///csvfile.csv")
For hdfs file:
df = spark.read.csv("hdfs:///csvfile.csv")
For hdfs file (with different delimiter than comma:
df = spark.read.option("delimiter","|")csv("hdfs:///csvfile.csv")
Dataframe将文件视为csv格式。
首先默认初始化SparkSession
对象,它将在shell中作为spark
使用
val spark = org.apache.spark.sql.SparkSession.builder
.master("local")
.appName("Spark CSV Reader")
.getOrCreate;
使用以下任一方法将CSV加载为qazxsw poi
DataFrame/DataSet
val df = spark.read
.format("csv")
.option("header", "true") //first line in file has headers
.option("mode", "DROPMALFORMED")
.load("hdfs:///csv/file/dir/file.csv")
You can do this SQL way as well
依赖关系:
val df = spark.sql("SELECT * FROM csv.`hdfs:///csv/file/dir/file.csv`")
"org.apache.spark" % "spark-core_2.11" % 2.0.0,
"org.apache.spark" % "spark-sql_2.11" % 2.0.0,
依赖关系:
val df = sqlContext.read
.format("com.databricks.spark.csv")
.option("header", "true")
.option("mode", "DROPMALFORMED")
.load("csv/file/path");
它的Hadoop是2.6,Spark是1.6,没有“databricks”包。
"org.apache.spark" % "spark-sql_2.10" % 1.6.0,
"com.databricks" % "spark-csv_2.10" % 1.6.0,
"com.univocity" % "univocity-parsers" % LATEST,
使用Spark 2.0,您可以通过以下方式阅读CSV
import org.apache.spark.sql.types.{StructType,StructField,StringType,IntegerType};
import org.apache.spark.sql.Row;
val csv = sc.textFile("/path/to/file.csv")
val rows = csv.map(line => line.split(",").map(_.trim))
val header = rows.first
val data = rows.filter(_(0) != header(0))
val rdd = data.map(row => Row(row(0),row(1).toInt))
val schema = new StructType()
.add(StructField("id", StringType, true))
.add(StructField("val", IntegerType, true))
val df = sqlContext.createDataFrame(rdd, schema)
在Java 1.8中此代码片段完美地用于读取CSV文件
POM.hml
val conf = new SparkConf().setMaster("local[2]").setAppName("my app")
val sc = new SparkContext(conf)
val sparkSession = SparkSession.builder
.config(conf = conf)
.appName("spark session example")
.getOrCreate()
val path = "/Users/xxx/Downloads/usermsg.csv"
val base_df = sparkSession.read.option("header","true").
csv(path)
Java的
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.0.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql_2.10 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>2.0.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.scala-lang/scala-library -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.8</version>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-csv_2.10</artifactId>
<version>1.4.0</version>
</dependency>
Penny的Spark 2示例是在spark2中实现它的方法。还有一个技巧:通过对数据进行初始扫描为您生成标题,方法是将选项SparkConf conf = new SparkConf().setAppName("JavaWordCount").setMaster("local");
// create Spark Context
SparkContext context = new SparkContext(conf);
// create spark Session
SparkSession sparkSession = new SparkSession(context);
Dataset<Row> df = sparkSession.read().format("com.databricks.spark.csv").option("header", true).option("inferSchema", true).load("hdfs://localhost:9000/usr/local/hadoop_data/loan_100.csv");
//("hdfs://localhost:9000/usr/local/hadoop_data/loan_100.csv");
System.out.println("========== Print Schema ============");
df.printSchema();
System.out.println("========== Print Data ==============");
df.show();
System.out.println("========== Print title ==============");
df.select("title").show();
设置为inferSchema
在这里,假设true
是你设置的一个火花会话,是加载在S3上的亚马逊主机的所有Landsat图像的CSV索引文件中的操作。
spark
坏消息是:这会触发扫描文件;对于像这个20 + MB压缩CSV文件那样大的东西,在长途连接上可能需要30秒。请记住:一旦你进入架构,你最好手动编写架构编码。
(代码片段Apache软件许可证2.0被授权以避免所有歧义;我作为S3集成的演示/集成测试所做的事情)
解析CSV文件存在很多挑战,如果文件大小较大,如果列值中存在非英语/转义/分隔符/其他字符,则可能会导致解析错误。
然后神奇的是在使用的选项中。那些适合我和希望的应该覆盖大多数边缘情况的代码如下:
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
val csvdata = spark.read.options(Map(
"header" -> "true",
"ignoreLeadingWhiteSpace" -> "true",
"ignoreTrailingWhiteSpace" -> "true",
"timestampFormat" -> "yyyy-MM-dd HH:mm:ss.SSSZZZ",
"inferSchema" -> "true",
"mode" -> "FAILFAST"))
.csv("s3a://landsat-pds/scene_list.gz")
希望有所帮助。更多参考:### Create a Spark Session
spark = SparkSession.builder.master("local").appName("Classify Urls").getOrCreate()
### Note the options that are used. You may have to tweak these in case of error
html_df = spark.read.csv(html_csv_file_path,
header=True,
multiLine=True,
ignoreLeadingWhiteSpace=True,
ignoreTrailingWhiteSpace=True,
encoding="UTF-8",
sep=',',
quote='"',
escape='"',
maxColumns=2,
inferSchema=True)
注意:上面的代码来自Spark 2 API,其中CSV文件读取API与Spark可安装的内置包捆绑在一起。
注意:PySpark是Spark的Python包装器,与Scala / Java共享相同的API。
如果您正在使用scala 2.11和Apache 2.0或更高版本构建jar。
无需创建Using PySpark 2 to read CSV having HTML source code或sqlContext
对象。只有一个sparkContext
对象满足所有需求的要求。
以下是mycode工作正常:
SparkSession
如果你在集群中运行,只需在定义import org.apache.spark.sql.{DataFrame, Row, SQLContext, SparkSession}
import org.apache.log4j.{Level, LogManager, Logger}
object driver {
def main(args: Array[String]) {
val log = LogManager.getRootLogger
log.info("**********JAR EXECUTION STARTED**********")
val spark = SparkSession.builder().master("local").appName("ValidationFrameWork").getOrCreate()
val df = spark.read.format("csv")
.option("header", "true")
.option("delimiter","|")
.option("inferSchema","true")
.load("d:/small_projects/spark/test.pos")
df.show()
}
}
对象时将.master("local")
更改为.master("yarn")
Spark Doc涵盖了这个:sparkBuilder
如果使用spark 2.0+,请尝试此操作
https://spark.apache.org/docs/2.2.0/sql-programming-guide.html
注意: - 这适用于任何分隔文件。只需使用选项(“分隔符”,)来更改值。
希望这是有帮助的。