在swift中将图像转换为二进制

问题描述 投票:4回答:2

我想将图像转换为二进制黑白,此时我正在使用常规嵌套循环遍历像素(存储在UnsafeMutableBufferPointer中),将每个RGB与平均值进行比较并将其设置为黑色或白色。

这似乎真的很慢,我确信有一种内置的方式使用gpu或经过优化。如果您可以提供代码示例或链接,那就太棒了。

for var y in 0..<height {
    for var x in 0..<width{
        //Pixel is small class i made for 8 bit access and comparison
        if (Buffer[x+y*width]  < AVRRGB) {
            Buffer[x+y*width] = Pixel(RGB: 0x000000FF)
        } else{
            Buffer[x+y*width] = Pixel(RGB: 0xFFFFFFFF)
        }
    }
}
ios swift cocoa-touch uiimage core-graphics
2个回答
6
投票

几点意见:

  1. 确保您在具有发布版本(或关闭优化)的设备上进行测试。仅这一点就可以让它更快。在iPhone 7+上,它将1920 x 1080像素彩色图像的转换率从1.7秒降低到不到0.1秒。
  2. 您可能希望使用DispatchQueue.concurrentPerform同时处理像素。在我的iPhone 7+上,它的速度提高了一倍。

根据我的经验,Core Image滤镜的速度并不快,但是如果您需要更快的速度,可以考虑使用vImage或Metal。但除非您处理的是非常大的图像,否则使用优化(可能是并发)的简单Swift代码的响应时间可能就足够了。

一个不相关的观察:

  1. 另外,我不确定你的黑白转换是如何工作的,但通常你想要计算彩色像素的relative luminance(例如0.2126 *红+ 0.7152 *绿+ 0.0722 *蓝)。当然,在将彩色图像转换为灰度时,你会做类似的事情,以获得更接近人眼可以看到的图像,如果转换为黑白,我会亲自做类似的事情。

仅供参考,我的Swift 3/4颜色到灰度的例程看起来像:

func blackAndWhite(image: UIImage, completion: @escaping (UIImage?) -> Void) {
    DispatchQueue.global(qos: .userInitiated).async {
        // get information about image

        let imageref = image.cgImage!
        let width = imageref.width
        let height = imageref.height

        // create new bitmap context

        let bitsPerComponent = 8
        let bytesPerPixel = 4
        let bytesPerRow = width * bytesPerPixel
        let colorSpace = CGColorSpaceCreateDeviceRGB()
        let bitmapInfo = Pixel.bitmapInfo
        let context = CGContext(data: nil, width: width, height: height, bitsPerComponent: bitsPerComponent, bytesPerRow: bytesPerRow, space: colorSpace, bitmapInfo: bitmapInfo)!

        // draw image to context

        let rect = CGRect(x: 0, y: 0, width: CGFloat(width), height: CGFloat(height))
        context.draw(imageref, in: rect)

        // manipulate binary data

        guard let buffer = context.data else {
            print("unable to get context data")
            completion(nil)
            return
        }

        let pixels = buffer.bindMemory(to: Pixel.self, capacity: width * height)

        DispatchQueue.concurrentPerform(iterations: height) { row in
            for col in 0 ..< width {
                let offset = Int(row * width + col)

                let red = Float(pixels[offset].red)
                let green = Float(pixels[offset].green)
                let blue = Float(pixels[offset].blue)
                let alpha = pixels[offset].alpha
                let luminance = UInt8(0.2126 * red + 0.7152 * green + 0.0722 * blue)
                pixels[offset] = Pixel(red: luminance, green: luminance, blue: luminance, alpha: alpha)
            }
        }

        // return the image

        let outputImage = context.makeImage()!
        completion(UIImage(cgImage: outputImage, scale: image.scale, orientation: image.imageOrientation))
    }
}

struct Pixel: Equatable {
    private var rgba: UInt32

    var red: UInt8 {
        return UInt8((rgba >> 24) & 255)
    }

    var green: UInt8 {
        return UInt8((rgba >> 16) & 255)
    }

    var blue: UInt8 {
        return UInt8((rgba >> 8) & 255)
    }

    var alpha: UInt8 {
        return UInt8((rgba >> 0) & 255)
    }

    init(red: UInt8, green: UInt8, blue: UInt8, alpha: UInt8) {
        rgba = (UInt32(red) << 24) | (UInt32(green) << 16) | (UInt32(blue) << 8) | (UInt32(alpha) << 0)
    }

    static let bitmapInfo = CGImageAlphaInfo.premultipliedLast.rawValue | CGBitmapInfo.byteOrder32Little.rawValue

    static func ==(lhs: Pixel, rhs: Pixel) -> Bool {
        return lhs.rgba == rhs.rgba
    }
}

显然,如果要将其转换为绝对黑白,则相应地调整算法,但这说明了并发图像缓冲区操作例程。


虽然上述速度相当快(再次,在优化的发布版本中),但使用vImage的速度更快。以下内容改编自Converting Color Images to Grayscale

func grayscale(of image: UIImage) -> UIImage? {
    guard var source = sourceBuffer(for: image) else { return nil }

    defer { free(source.data) }

    var destination = destinationBuffer(for: source)

    // Declare the three coefficients that model the eye's sensitivity
    // to color.
    let redCoefficient: Float = 0.2126
    let greenCoefficient: Float = 0.7152
    let blueCoefficient: Float = 0.0722

    // Create a 1D matrix containing the three luma coefficients that
    // specify the color-to-grayscale conversion.
    let divisor: Int32 = 0x1000
    let fDivisor = Float(divisor)

    var coefficients = [
        Int16(redCoefficient * fDivisor),
        Int16(greenCoefficient * fDivisor),
        Int16(blueCoefficient * fDivisor)
    ]

    // Use the matrix of coefficients to compute the scalar luminance by
    // returning the dot product of each RGB pixel and the coefficients
    // matrix.
    let preBias: [Int16] = [0, 0, 0, 0]
    let postBias: Int32 = 0

    let result = vImageMatrixMultiply_ARGB8888ToPlanar8(
        &source,
        &destination,
        &coefficients,
        divisor,
        preBias,
        postBias,
        vImage_Flags(kvImageNoFlags))

    guard result == kvImageNoError else { return nil }

    defer { free(destination.data) }

    // Create a 1-channel, 8-bit grayscale format that's used to
    // generate a displayable image.
    var monoFormat = vImage_CGImageFormat(
        bitsPerComponent: 8,
        bitsPerPixel: 8,
        colorSpace: Unmanaged.passRetained(CGColorSpaceCreateDeviceGray()),
        bitmapInfo: CGBitmapInfo(rawValue: CGImageAlphaInfo.none.rawValue),
        version: 0,
        decode: nil,
        renderingIntent: .defaultIntent)

    // Create a Core Graphics image from the grayscale destination buffer.
    let cgImage = vImageCreateCGImageFromBuffer(&destination,
                                                &monoFormat,
                                                nil,
                                                nil,
                                               vImage_Flags(kvImageNoFlags),
                                               nil)?.takeRetainedValue()
    return cgImage.map { UIImage(cgImage: $0) }
}


func sourceBuffer(for image: UIImage) -> vImage_Buffer? {
    guard let cgImage = image.cgImage else { return nil }

    let bitmapInfo = CGBitmapInfo(rawValue: CGImageAlphaInfo.premultipliedLast.rawValue).union(.byteOrder32Big)

    var format = vImage_CGImageFormat(bitsPerComponent: 8,
                                      bitsPerPixel: 32,
                                      colorSpace: Unmanaged.passRetained(CGColorSpaceCreateDeviceRGB()),
                                      bitmapInfo: bitmapInfo,
                                      version: 0,
                                      decode: nil,
                                      renderingIntent: .defaultIntent)

    var sourceImageBuffer = vImage_Buffer()
    vImageBuffer_InitWithCGImage(&sourceImageBuffer,
                                 &format,
                                 nil,
                                 cgImage,
                                 vImage_Flags(kvImageNoFlags))

    return sourceImageBuffer

func destinationBuffer(for sourceBuffer: vImage_Buffer) -> vImage_Buffer {
    var destinationBuffer = vImage_Buffer()

    vImageBuffer_Init(&destinationBuffer,
                      sourceBuffer.height,
                      sourceBuffer.width,
                      8,
                      vImage_Flags(kvImageNoFlags))

    return destinationBuffer
}

0
投票

vImage转换为1位是vImageConvert_Planar8ToPlanar1。我建议使用其中一个抖动选项。您需要先将RGB图像转换为灰度图像。原则上,这是vImageMatrixMultiply_ARGB8888ToPlanar8(),但实际上它可能应该涉及一些更复杂的颜色空间转换而不是简单的矩阵。

如果所有这些听起来太复杂,只需使用vImageConvert_AnyToAny,它应该做正确的事情。

© www.soinside.com 2019 - 2024. All rights reserved.