从图像中裁剪出一部分(findContours?){opencv,java}

问题描述 投票:5回答:2

我的这张图片带有包含字母的盒子,例如:

“原始”

我已经能够裁剪每个盒子。就像这样:

“包含字母的裁剪框的图片”

现在我的问题。我怎样才能只从每个盒子中剪出字母?期望的结果看起来像这样

<< img src =“ https://image.soinside.com/eyJ1cmwiOiAiaHR0cHM6Ly9pLnN0YWNrLmltZ3VyLmNvbS9ISER1SS5qcGcifQ==” alt =“所需结果”>

我想使用findContours,但我不确定如何实现此目标,因为它会检测到噪音以及周围的所有事物。

java opencv crop
2个回答
14
投票

方法根据这一事实,我建议您使用以下方法提取框。如果您按照步骤进行操作,我认为这样可以解决问题:

  1. 查找图像的中心
  2. 查找图像中的轮廓-可以成为候选轮廓
  3. 查找每个轮廓的边界矩形
  4. 找到每个边界矩形的中心
  5. 找到每个边界矩形到图像中心的距离
  6. 查找最小距离-您的答案

注意:有一个名为pad的变量,它控制结果图形的填充!对您所有的盒子都这样做。希望对您有所帮助!

祝你好运:)


Python代码

# reading image in grayscale
image = cv2.imread('testing2.jpg',cv2.CV_LOAD_IMAGE_GRAYSCALE)
# thresholding to get a binary one
ret, image = cv2.threshold(image, 100,255,cv2.THRESH_BINARY_INV)
# finding the center of image
image_center = (image.shape[0]/2, image.shape[1]/2)

if image is None:
    print 'can not read the image data'
# finding image contours
contours, hier = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# finding distance of each contour from the center of image
d_min = 1000
for contour in contours:
    # finding bounding rect
    rect = cv2.boundingRect(contour)
    # skipping the outliers
    if rect[3] > image.shape[1]/2 and rect[2] > image.shape[0]/2:
        continue
    pt1 = (rect[0], rect[1])
    # finding the center of bounding rect-digit
    c = (rect[0]+rect[2]*1/2, rect[1]+rect[3]*1/2)
    d = np.sqrt((c[0] - image_center[0])**2 + (c[1]-image_center[1])**2)
    # finding the minimum distance from the center
    if d < d_min:
        d_min = d
        rect_min = [pt1, (rect[2],rect[3])]
# fetching the image with desired padding
pad = 5
result = image[rect_min[0][1]-pad:rect_min[0][1]+rect_min[1][1]+pad, rect_min[0][0]-pad:rect_min[0][0]+rect_min[1][0]+pad]

plt.imshow(result*255, 'gray')
plt.show()

Java代码

    System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
    // reading image 
    Mat image = Highgui.imread(".\\testing2.jpg", Highgui.CV_LOAD_IMAGE_GRAYSCALE);
    // clone the image 
    Mat original = image.clone();
    // thresholding the image to make a binary image
    Imgproc.threshold(image, image, 100, 128, Imgproc.THRESH_BINARY_INV);
    // find the center of the image
    double[] centers = {(double)image.width()/2, (double)image.height()/2};
    Point image_center = new Point(centers);

    // finding the contours
    ArrayList<MatOfPoint> contours = new ArrayList<MatOfPoint>();
    Mat hierarchy = new Mat();
    Imgproc.findContours(image, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);

    // finding best bounding rectangle for a contour whose distance is closer to the image center that other ones
    double d_min = Double.MAX_VALUE;
    Rect rect_min = new Rect();
    for (MatOfPoint contour : contours) {
        Rect rec = Imgproc.boundingRect(contour);
        // find the best candidates
        if (rec.height > image.height()/2 & rec.width > image.width()/2)            
            continue;
        Point pt1 = new Point((double)rec.x, (double)rec.y);
        Point center = new Point(rec.x+(double)(rec.width)/2, rec.y + (double)(rec.height)/2);
        double d = Math.sqrt(Math.pow((double)(pt1.x-image_center.x),2) + Math.pow((double)(pt1.y -image_center.y), 2));            
        if (d < d_min)
        {
            d_min = d;
            rect_min = rec;
        }                   
    }
    // slicing the image for result region
    int pad = 5;        
    rect_min.x = rect_min.x - pad;
    rect_min.y = rect_min.y - pad;

    rect_min.width = rect_min.width + 2*pad;
    rect_min.height = rect_min.height + 2*pad;

    Mat result = original.submat(rect_min);     
    Highgui.imwrite("result.png", result);

编辑:已添加Java代码!

结果

<< img src =“ https://image.soinside.com/eyJ1cmwiOiAiaHR0cHM6Ly9pLnN0YWNrLmltZ3VyLmNvbS9Cdm83dy5wbmcifQ==” alt =“在此处输入图像描述”>

© www.soinside.com 2019 - 2024. All rights reserved.