我正在使用 PIL 将通过 Django 上传的透明 PNG 图像转换为 JPG 文件。输出看起来损坏了。
Image.open(object.logo.path).save('/tmp/output.jpg', 'JPEG')
或
Image.open(object.logo.path).convert('RGB').save('/tmp/output.png')
两种方式,生成的图像如下所示:
有办法解决这个问题吗?我想要白色背景,以前的透明背景。
感谢各位的精彩回答,我提出了以下函数集合:
import Image
import numpy as np
def alpha_to_color(image, color=(255, 255, 255)):
"""Set all fully transparent pixels of an RGBA image to the specified color.
This is a very simple solution that might leave over some ugly edges, due
to semi-transparent areas. You should use alpha_composite_with color instead.
Source: http://stackoverflow.com/a/9166671/284318
Keyword Arguments:
image -- PIL RGBA Image object
color -- Tuple r, g, b (default 255, 255, 255)
"""
x = np.array(image)
r, g, b, a = np.rollaxis(x, axis=-1)
r[a == 0] = color[0]
g[a == 0] = color[1]
b[a == 0] = color[2]
x = np.dstack([r, g, b, a])
return Image.fromarray(x, 'RGBA')
def alpha_composite(front, back):
"""Alpha composite two RGBA images.
Source: http://stackoverflow.com/a/9166671/284318
Keyword Arguments:
front -- PIL RGBA Image object
back -- PIL RGBA Image object
"""
front = np.asarray(front)
back = np.asarray(back)
result = np.empty(front.shape, dtype='float')
alpha = np.index_exp[:, :, 3:]
rgb = np.index_exp[:, :, :3]
falpha = front[alpha] / 255.0
balpha = back[alpha] / 255.0
result[alpha] = falpha + balpha * (1 - falpha)
old_setting = np.seterr(invalid='ignore')
result[rgb] = (front[rgb] * falpha + back[rgb] * balpha * (1 - falpha)) / result[alpha]
np.seterr(**old_setting)
result[alpha] *= 255
np.clip(result, 0, 255)
# astype('uint8') maps np.nan and np.inf to 0
result = result.astype('uint8')
result = Image.fromarray(result, 'RGBA')
return result
def alpha_composite_with_color(image, color=(255, 255, 255)):
"""Alpha composite an RGBA image with a single color image of the
specified color and the same size as the original image.
Keyword Arguments:
image -- PIL RGBA Image object
color -- Tuple r, g, b (default 255, 255, 255)
"""
back = Image.new('RGBA', size=image.size, color=color + (255,))
return alpha_composite(image, back)
def pure_pil_alpha_to_color_v1(image, color=(255, 255, 255)):
"""Alpha composite an RGBA Image with a specified color.
NOTE: This version is much slower than the
alpha_composite_with_color solution. Use it only if
numpy is not available.
Source: http://stackoverflow.com/a/9168169/284318
Keyword Arguments:
image -- PIL RGBA Image object
color -- Tuple r, g, b (default 255, 255, 255)
"""
def blend_value(back, front, a):
return (front * a + back * (255 - a)) / 255
def blend_rgba(back, front):
result = [blend_value(back[i], front[i], front[3]) for i in (0, 1, 2)]
return tuple(result + [255])
im = image.copy() # don't edit the reference directly
p = im.load() # load pixel array
for y in range(im.size[1]):
for x in range(im.size[0]):
p[x, y] = blend_rgba(color + (255,), p[x, y])
return im
def pure_pil_alpha_to_color_v2(image, color=(255, 255, 255)):
"""Alpha composite an RGBA Image with a specified color.
Simpler, faster version than the solutions above.
Source: http://stackoverflow.com/a/9459208/284318
Keyword Arguments:
image -- PIL RGBA Image object
color -- Tuple r, g, b (default 255, 255, 255)
"""
image.load() # needed for split()
background = Image.new('RGB', image.size, color)
background.paste(image, mask=image.split()[3]) # 3 is the alpha channel
return background
简单的非合成
alpha_to_color
功能是最快的解决方案,但会留下难看的边框,因为它不处理半透明区域。
纯 PIL 和 numpy 合成解决方案都给出了很好的结果,但
alpha_composite_with_color
(8.93 毫秒)比 pure_pil_alpha_to_color
(79.6 毫秒)快得多。 $ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_to_color(i)"
10 loops, best of 3: 4.67 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_composite_with_color(i)"
10 loops, best of 3: 8.93 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color(i)"
10 loops, best of 3: 79.6 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color_v2(i)"
10 loops, best of 3: 1.1 msec per loop
这是一个更简单的版本 - 不确定它的性能如何。很大程度上基于我在构建对 sorl 缩略图的
RGBA -> JPG + BG
支持时发现的一些 django 片段。
from PIL import Image
png = Image.open(object.logo.path)
png.load() # required for png.split()
background = Image.new("RGB", png.size, (255, 255, 255))
background.paste(png, mask=png.split()[3]) # 3 is the alpha channel
background.save('foo.jpg', 'JPEG', quality=80)
结果@80%
结果@50%
Image.alpha_composite
,Yuji 'Tomita' Tomita 的解决方案变得更简单。如果 png 没有 Alpha 通道,此代码可以避免 tuple index out of range
错误。
from PIL import Image
png = Image.open(img_path).convert('RGBA')
background = Image.new('RGBA', png.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, png)
alpha_composite.save('foo.jpg', 'JPEG', quality=80)
透明部分大多具有RGBA值(0,0,0,0)。由于JPG没有透明度,因此jpeg值设置为(0,0,0),即黑色。
圆形图标周围有一些具有非零 RGB 值的像素,其中 A = 0。因此它们在 PNG 中看起来是透明的,但在 JPG 中看起来颜色很有趣。
您可以使用 numpy 将 A == 0 处的所有像素设置为 R = G = B = 255,如下所示:
import Image
import numpy as np
FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
x = np.array(img)
r, g, b, a = np.rollaxis(x, axis = -1)
r[a == 0] = 255
g[a == 0] = 255
b[a == 0] = 255
x = np.dstack([r, g, b, a])
img = Image.fromarray(x, 'RGBA')
img.save('/tmp/out.jpg')
请注意,徽标还有一些半透明像素,用于平滑文字和图标周围的边缘。保存为 jpeg 会忽略半透明,使生成的 jpeg 看起来相当锯齿状。
使用 imagemagick 的
convert
命令可以获得更好质量的结果:
convert logo.png -background white -flatten /tmp/out.jpg
要使用 numpy 制作质量更好的混合,您可以使用 alpha 合成:
import Image
import numpy as np
def alpha_composite(src, dst):
'''
Return the alpha composite of src and dst.
Parameters:
src -- PIL RGBA Image object
dst -- PIL RGBA Image object
The algorithm comes from http://en.wikipedia.org/wiki/Alpha_compositing
'''
# http://stackoverflow.com/a/3375291/190597
# http://stackoverflow.com/a/9166671/190597
src = np.asarray(src)
dst = np.asarray(dst)
out = np.empty(src.shape, dtype = 'float')
alpha = np.index_exp[:, :, 3:]
rgb = np.index_exp[:, :, :3]
src_a = src[alpha]/255.0
dst_a = dst[alpha]/255.0
out[alpha] = src_a+dst_a*(1-src_a)
old_setting = np.seterr(invalid = 'ignore')
out[rgb] = (src[rgb]*src_a + dst[rgb]*dst_a*(1-src_a))/out[alpha]
np.seterr(**old_setting)
out[alpha] *= 255
np.clip(out,0,255)
# astype('uint8') maps np.nan (and np.inf) to 0
out = out.astype('uint8')
out = Image.fromarray(out, 'RGBA')
return out
FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
white = Image.new('RGBA', size = img.size, color = (255, 255, 255, 255))
img = alpha_composite(img, white)
img.save('/tmp/out.jpg')
这是纯 PIL 的解决方案。
def blend_value(under, over, a):
return (over*a + under*(255-a)) / 255
def blend_rgba(under, over):
return tuple([blend_value(under[i], over[i], over[3]) for i in (0,1,2)] + [255])
white = (255, 255, 255, 255)
im = Image.open(object.logo.path)
p = im.load()
for y in range(im.size[1]):
for x in range(im.size[0]):
p[x,y] = blend_rgba(white, p[x,y])
im.save('/tmp/output.png')
没有坏掉。它完全按照你的指示去做;这些像素是黑色且完全透明。您将需要迭代所有像素并将完全透明的像素转换为白色。
import numpy as np
import PIL
def convert_image(image_file):
image = Image.open(image_file) # this could be a 4D array PNG (RGBA)
original_width, original_height = image.size
np_image = np.array(image)
new_image = np.zeros((np_image.shape[0], np_image.shape[1], 3))
# create 3D array
for each_channel in range(3):
new_image[:,:,each_channel] = np_image[:,:,each_channel]
# only copy first 3 channels.
# flushing
np_image = []
return new_image
最佳答案已经给出:
from PIL import Image
img = Image.open("image.png")
bg = Image.new("RGBA",img.size,(255,255,255))
img = Image.alpha_composite(bg,img) # puts our image on top of white background
img.convert("RGB").save("image_rgb.png")
但在看到这些解决方案之前,我自己是这样做的。我分享它只是因为它是最容易理解其工作原理的。 (每个像素如何混合)
from PIL import Image
import numpy
data = numpy.array(Image.open("image.png"))
h,w = data.shape[:2]
def lerp(a,b,f): return [round(a[i]+(b[i]-a[i])*f) for i in (0,1,2)]
for x in range(w):
for y in range(h):
r,g,b,a = data[y][x]
r,g,b = lerp((255,255,255),(r,g,b),a/255) # blend ontop of white based on alpha amount
data[y][x] = (r,g,b,255)
Image.fromarray(data).convert("RGB").save("image_rgb.png")
我们所做的只是在白色(alpha=0)和现有像素之间进行插值。 (阿尔法 = 255)
这两种解决方案创建的图像与您使用“画图”重新保存图像时获得的图像完全相同。 (您可以使用
(data1==data2).all()
检查)准确地说,round()
函数中需要 lerp()
。我将像素保存到浮点数组中,以查看与重新保存的图像中的像素相比得到的结果,并了解像素应如何舍入。 (即 180 vs 180.3 和 214 vs 213.7)四舍五入到最接近的值是有意义的。
现在我只需要知道如何准确地调整 Paint 的大小。
from PIL import Image
def fig2img ( fig ):
"""
@brief Convert a Matplotlib figure to a PIL Image in RGBA format and return it
@param fig a matplotlib figure
@return a Python Imaging Library ( PIL ) image
"""
# put the figure pixmap into a numpy array
buf = fig2data ( fig )
w, h, d = buf.shape
return Image.frombytes( "RGBA", ( w ,h ), buf.tostring( ) )
def fig2data ( fig ):
"""
@brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
@param fig a matplotlib figure
@return a numpy 3D array of RGBA values
"""
# draw the renderer
fig.canvas.draw ( )
# Get the RGBA buffer from the figure
w,h = fig.canvas.get_width_height()
buf = np.fromstring ( fig.canvas.tostring_argb(), dtype=np.uint8 )
buf.shape = ( w, h, 4 )
# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
buf = np.roll ( buf, 3, axis = 2 )
return buf
def rgba2rgb(img, c=(0, 0, 0), path='foo.jpg', is_already_saved=False, if_load=True):
if not is_already_saved:
background = Image.new("RGB", img.size, c)
background.paste(img, mask=img.split()[3]) # 3 is the alpha channel
background.save(path, 'JPEG', quality=100)
is_already_saved = True
if if_load:
if is_already_saved:
im = Image.open(path)
return np.array(im)
else:
raise ValueError('No image to load.')
基于上面的例子:
它接收 RGBA 图像并返回 Alpha 通道转换为白色的 RGB 图像。
from PIL import Image
def imageAlphaToWhite(image):
background = Image.new("RGBA", image.size, "WHITE")
alphaComposite = Image.alpha_composite(background, image)
alphaComposite.convert("RGB")
return alphaComposite