Python 中 OLS 的 Newey-West 标准错误?

问题描述 投票:0回答:1

我想要一个系数和与之相关的 Newey-West 标准误差。

我正在寻找可以执行以下 R 代码正在执行的操作的 Python 库(理想情况下,但任何可行的解决方案都可以):

library(sandwich)
library(lmtest)

a <- matrix(c(1,3,5,7,4,5,6,4,7,8,9))
b <- matrix(c(3,5,6,2,4,6,7,8,7,8,9))

temp.lm = lm(a ~ b)

temp.summ <- summary(temp.lm)
temp.summ$coefficients <- unclass(coeftest(temp.lm, vcov. = NeweyWest))

print (temp.summ$coefficients)

结果:

             Estimate Std. Error   t value  Pr(>|t|)
(Intercept) 2.0576208  2.5230532 0.8155281 0.4358205
b           0.5594796  0.4071834 1.3740235 0.2026817

我得到了系数以及与之相关的标准误差。

我看到 statsmodels.stats.sandwich_covariance.cov_hac 模块,但我不知道如何使其与 OLS 一起使用。

python statistics time-series statsmodels
1个回答
31
投票

已编辑(2015 年 10 月 31 日)以反映 2015 年秋季

statsmodels
的首选编码风格。

statsmodels

版本0.6.1中,您可以执行以下操作:

import pandas as pd import numpy as np import statsmodels.formula.api as smf df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9], 'b':[3,5,6,2,4,6,7,8,7,8,9]}) reg = smf.ols('a ~ 1 + b',data=df).fit(cov_type='HAC',cov_kwds={'maxlags':1}) print(reg.summary()) OLS Regression Results ============================================================================== Dep. Variable: a R-squared: 0.281 Model: OLS Adj. R-squared: 0.201 Method: Least Squares F-statistic: 1.949 Date: Sat, 31 Oct 2015 Prob (F-statistic): 0.196 Time: 03:15:46 Log-Likelihood: -22.603 No. Observations: 11 AIC: 49.21 Df Residuals: 9 BIC: 50.00 Df Model: 1 Covariance Type: HAC ============================================================================== coef std err z P>|z| [95.0% Conf. Int.] ------------------------------------------------------------------------------ Intercept 2.0576 2.661 0.773 0.439 -3.157 7.272 b 0.5595 0.401 1.396 0.163 -0.226 1.345 ============================================================================== Omnibus: 0.361 Durbin-Watson: 1.468 Prob(Omnibus): 0.835 Jarque-Bera (JB): 0.331 Skew: 0.321 Prob(JB): 0.847 Kurtosis: 2.442 Cond. No. 19.1 ============================================================================== Warnings: [1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 1 lags and without small sample correction
或者可以在拟合模型后使用

get_robustcov_results

方法:

reg = smf.ols('a ~ 1 + b',data=df).fit() new = reg.get_robustcov_results(cov_type='HAC',maxlags=1) print(new.summary()) OLS Regression Results ============================================================================== Dep. Variable: a R-squared: 0.281 Model: OLS Adj. R-squared: 0.201 Method: Least Squares F-statistic: 1.949 Date: Sat, 31 Oct 2015 Prob (F-statistic): 0.196 Time: 03:15:46 Log-Likelihood: -22.603 No. Observations: 11 AIC: 49.21 Df Residuals: 9 BIC: 50.00 Df Model: 1 Covariance Type: HAC ============================================================================== coef std err z P>|z| [95.0% Conf. Int.] ------------------------------------------------------------------------------ Intercept 2.0576 2.661 0.773 0.439 -3.157 7.272 b 0.5595 0.401 1.396 0.163 -0.226 1.345 ============================================================================== Omnibus: 0.361 Durbin-Watson: 1.468 Prob(Omnibus): 0.835 Jarque-Bera (JB): 0.331 Skew: 0.321 Prob(JB): 0.847 Kurtosis: 2.442 Cond. No. 19.1 ============================================================================== Warnings: [1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 1 lags and without small sample correction

statsmodels

的默认值与
R
中等效方法的默认值略有不同。通过将 
R
 调用更改为以下内容,可以使 
statsmodels
 方法等同于 
vcov,
 默认值(我上面所做的):

temp.summ$coefficients <- unclass(coeftest(temp.lm, vcov. = NeweyWest(temp.lm,lag=1,prewhite=FALSE))) print(temp.summ$coefficients) Estimate Std. Error t value Pr(>|t|) (Intercept) 2.0576208 2.6605060 0.7733945 0.4591196 b 0.5594796 0.4007965 1.3959193 0.1962142
您仍然可以在 pandas 中执行 Newey-West (0.17),尽管我相信计划是在 pandas 中弃用 OLS:

print(pd.stats.ols.OLS(df.a,df.b,nw_lags=1)) -------------------------Summary of Regression Analysis------------------------- Formula: Y ~ <x> + <intercept> Number of Observations: 11 Number of Degrees of Freedom: 2 R-squared: 0.2807 Adj R-squared: 0.2007 Rmse: 2.0880 F-stat (1, 9): 1.5943, p-value: 0.2384 Degrees of Freedom: model 1, resid 9 -----------------------Summary of Estimated Coefficients------------------------ Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5% -------------------------------------------------------------------------------- x 0.5595 0.4431 1.26 0.2384 -0.3090 1.4280 intercept 2.0576 2.9413 0.70 0.5019 -3.7073 7.8226 *** The calculations are Newey-West adjusted with lags 1 ---------------------------------End of Summary---------------------------------
    
© www.soinside.com 2019 - 2024. All rights reserved.