给你一个带权无向图 G,有 N 个顶点,编号为 1 到 N。最初,G 没有边。
您将执行 M 次操作来向 G 添加边。第 i 次操作(1≤i≤M)如下:
给定一个顶点子集 Si={Ai,1, Ai,2, ,…,Ai,Ki},由 Ki 顶点组成。对于每对 u,v 使得 u,v ∈ Si 且 u
from collections import defaultdict
def solution(A):
class Kruskal:
def __init__(self, G):
self.G = G
self.parent = {}
self.rank = {}
self.make_sets()
def make_sets(self):
for u, v in self.G:
if u not in self.parent:
self.parent[u] = u
self.rank[u] = 0
if v not in self.parent:
self.parent[v] = v
self.rank[v] = 0
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]
def union(self, u, v):
su, sv = self.find(u), self.find(v)
if su != sv:
if self.rank[su] > self.rank[sv]:
self.parent[sv] = su
else:
self.parent[su] = sv
if self.rank[su] == self.rank[sv]:
self.rank[sv] += 1
def _mst(self):
mst = []
for edge in self.G.keys():
u, v = edge
if self.find(u) != self.find(v):
self.union(u, v)
mst.append((u, v, self.G[edge]))
return mst
N, M = A[0]
graph = defaultdict(int)
for i in range(1, len(A)):
if i % 2 == 1:
k, c = A[i]
else:
edges = A[i]
for ii in range(len(edges)):
for jj in range(ii + 1, len(edges)):
if edges[ii] < edges[jj]:
if (edges[jj], edges[ii]) not in graph or (edges[ii], edges[jj]) not in graph:
graph[(edges[jj], edges[ii])] = c
graph[(edges[ii], edges[jj])] = c
continue
if (edges[jj], edges[ii]) in graph and graph[(edges[jj], edges[ii])] > c:
graph[(edges[jj], edges[ii])] = c
if (edges[ii], edges[jj]) in graph and graph[(edges[ii], edges[jj])] > c:
graph[(edges[ii], edges[jj])] = c
kruskal = Kruskal(graph)
MST = kruskal._mst()
res = 0
nodes = set()
# print(MST)
for x, y, z in sorted(MST, key=lambda o: o[-1]):
res += z
nodes.update({x, y})
if sorted(nodes) != list(range(1, N + 1)):
print(-1)
else:
print(res)
A = [[10, 5], [6, 158260522], [1, 3, 6, 8, 9, 10], [10, 877914575], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[4, 602436426], [2, 6, 7, 9], [6, 24979445], [2, 3, 4, 5, 8, 10], [4, 861648772], [2, 4, 8, 9]]
solution(A)
它输出:
4302960910
。预期输出是1202115217
。我错过了什么?
from collections import defaultdict
from heapq import heappush, heappop
def solution(A):
def prim(G):
vis = set()
start, dest = next(iter(G))
vis.add(start)
Q, mst = [], []
for (start, nei), w in G.items():
heappush(Q, (w, start, nei))
while Q: # and len(vis) < len(G):
# print(Q)
w, src, dest = heappop(Q)
if dest in vis:
continue
vis.add(dest)
mst.append((src, dest, w))
for w, nei in G[dest]:
heappush(Q, (w, dest, nei))
return mst
N, M = A[0]
graph = defaultdict(list)
for i in range(1, len(A)):
if i % 2 == 1:
k, c = A[i]
else:
edges = A[i]
for ii in range(len(edges)):
for jj in range(ii + 1, len(edges)):
if edges[ii] < edges[jj]:
if (edges[jj], edges[ii]) not in graph:
graph[(edges[ii], edges[jj])] = c
graph[(edges[jj], edges[ii])] = c
continue
if (edges[jj], edges[ii]) in graph and graph[(edges[jj], edges[ii])] > c:
graph[(edges[jj], edges[ii])] = c
# if (edges[ii], edges[jj]) in graph and graph[(edges[ii], edges[jj])] > c:
# graph[(edges[ii], edges[jj])] = c
mst = prim(graph)
res = 0
s = set()
for x, y, w in mst:
res += w
s.update({x, y})
if sorted(s) != list(range(1, N + 1)):
print(-1)
else:
print(res)
A = [[10, 5], [6, 158260522], [1, 3, 6, 8, 9, 10], [10, 877914575], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[4, 602436426], [2, 6, 7, 9], [6, 24979445], [2, 3, 4, 5, 8, 10], [4, 861648772], [2, 4, 8, 9]]
solution(A)
替代算法似乎“部分”起作用,但我仍然不确定它是否已正确实现?
algorithm Kruskal(G) is
F:= ∅
for each v in G.V do
MAKE-SET(v)
for each {u, v} in G.E ordered by weight({u, v}), increasing do
if FIND-SET(u) ≠ FIND-SET(v) then
F := F ∪ { {u, v} }
UNION(FIND-SET(u), FIND-SET(v))
return F
solution
方法更改 solution
方法。请注意,这个问题中的派系是一个诡计。如果您只是将每个子集中的第一个顶点连接到其他每个顶点而不是形成整个团,则 MST 的成本不会改变。这种简单的优化使其成为本质上线性时间算法。