{'a': [5, 6, 3, 1, 3, 2, 5, 8, 6, 7],
'b': [3, 5, 2, 7, 0, 2, 10, 4, 3, 4],
'c': [9, 7, 11, 10, 8, 9, 7, 10, 7, 9],
'd': [6, 4, 5, 7, 6, 8, 5, 6, 5, 7],
'e': [2, 5, 1, 4, 2, 3, 4, 2, 5, 1]}
我还设置了一个空词典,我想在原始字典中存储每个列表的平均值和标准偏差:
{'a_analysis': [],
'b_analysis': [],
'c_analysis': [],
'd_analysis': [],
'e_analysis': []}
for key in original_dictionary: #for each key in the dictionary
for value in original_dictionary: #iterate through the values in each key
sum =+ value #add the value to a sum variable
mean = sum / len(orignal_dictionary[key]) #get the mean by dividing the sum by the len of each key
#here I want to return the mean value to the respective key in the new dictionary
sd = #then I need to get a value for the standard deviation here
#and also return it to the respective key in the new dictionary
任何帮助将不胜感激。
您也可以使用
pandas
import pandas as pd
out = pd.DataFrame(your_dict).agg(['mean', 'std']).to_dict()
{'a': {'mean': 4.6, 'std': 2.2705848487901865},
'b': {'mean': 4.0, 'std': 2.8284271247461903},
'c': {'mean': 8.7, 'std': 1.4181364924121764},
'd': {'mean': 5.9, 'std': 1.1972189997378646},
'e': {'mean': 2.9, 'std': 1.5238839267549948}}
这里是一个解决方案,希望您喜欢这样:
这是输出:
{'a_analysis': {'mean': 4.6, 'standard deviation': 2.1540659228538015},
'b_analysis': {'mean': 4.0, 'standard deviation': 2.6832815729997477},
'c_analysis': {'mean': 8.7, 'standard deviation': 1.345362404707371},
'd_analysis': {'mean': 5.9, 'standard deviation': 1.1357816691600546},
'e_analysis': {'mean': 2.9, 'standard deviation': 1.445683229480096}}
刚刚完成了我的解决方案,并添加了一些评论。现在可以解释。