我想知道如何从他们的FTP站点下载LEHD文件。
https://lehd.ces.census.gov/data/lodes/LODES7/
我需要为工作场所和居住地点下载多年的数据。这些文件是定期命名的,技术文档可以在这里找到:
https://lehd.ces.census.gov/data/lodes/LODES7/LODESTechDoc7.2.pdf S000引用所有劳动力细分市场JT00引用所有工作类型
所以典型的文件名是:ca_wac_S000_JT00_2008.csv.gz在'目录'/ URL:https://lehd.ces.census.gov/data/lodes/LODES7/ca/wac/
This bit of git-hub code seems relevant。 Harvard tutorial很有用,并为我提供了一种创建所有文件列表的方法。但我无法让实际的下载工作 - R.curl hasn't worked for me,因为我遇到了SSL问题。
扩展代码似乎也不起作用:
install.packages("RCurl")
library(RCurl)
options(RCurlOptions = list(cainfo = system.file("CurlSSL", "cacert.pem", package = "RCurl")))
URL <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06hid.csv"
x <- getURL(URL)
x
#the above code works.
#my implementation...fails
URL <- "https://lehd.ces.census.gov/data/lodes/LODES7/ca/wac/ca_wac_S000_JT00_2002.csv.gz"
x <- getURL(URL)
#results in following error:
#Error in function (type, msg, asError = TRUE) :
# error:14077410:SSL routines:SSL23_GET_SERVER_HELLO:sslv3 alert handshake failure
devtools :: session_info()会话信息------------------------------------------ ---------------------------------------------设置值版本R版本3.4.3(2017-11-30)system x86_64,mingw32 ui RStudio(1.1.383)language(EN)collate English_United States.1252 tz America / Denver 日期2017-12-17
包裹------------------------------------------------- ------------------------------------------ package * version date source acs * 2.1 0.2 2017-10-10 CRAN(R 3.4.3)断言0.2.0 2017-04-11 CRAN(R 3.4.3)基础* 3.4.3 2017-12-06 local bindr 0.1 2016-11-13 CRAN(R 3.4 .3)bindrcpp 0.2 2017-06-17 CRAN(R 3.4.3)class 7.3-14 2015-08-30 CRAN(R 3.4.3)classInt 0.1-24 2017-04-16 CRAN(R 3.4.3)编译器3.4.3 2017-12-06 local curl * 3.1 2017-12-12 CRAN(R 3.4.3)数据集* 3.4.3 2017-12-06本地DBI 0.7 2017-06-18 CRAN(R 3.4.3)devtools * 1.13。 4 2017-11-09 CRAN(R 3.4.3)摘要0.6.13 2017-12-14 CRAN(R 3.4.3)dplyr * 0.7.4 2017-09-28 CRAN(R 3.4.3)e1071 1.6-8 2017-02-02 CRAN(R 3.4.3)国外0.8-69 2017-06-22 CRAN(R 3.4.3)gdtools * 0.1.6 2017-09-01 CRAN(R 3.4.3)git2r 0.19.0 2017-07-19 CRAN(R 3.4.3)胶水1.2.0 2017-10-29 CRAN(R 3.4.3)图形* 3.4.3 2017-12-06本地grDevices * 3.4.3 2017-12-06本地网格3.4.3 2017-12-06本地hms 0.4.0 2017-11-23 CRAN(R 3.4.3)httr 1.3.1 2017-08-20 CRAN(R 3.4.3)格子0.20-35 2017-03- 25 CRAN(R 3.4.3)lodes * 0.1.0 2017-12-17 git(@ 8cca008)magrittr 1.5 2014-11-22 CRAN(R 3.4.3)maptools 0.9-2 2017-03-25 CRAN(R 3.4.3)备忘录1.1.0 2017-04-21 CRAN(R 3.4.3)方法* 3.4.3 2017-12-06本地pkgconfig 2.0.1 2017-03-21 CRAN( R 3.4.3)plyr 1.8.4 2016-06-08 CRAN(R 3.4.3)purrr 0.2.4 2017-10-18 CRAN(R 3.4.3)R6 2.2.2 2017-06-17 CRAN(R 3.4.3)rappdirs 0.3.1 2016-03-28 CRAN(R 3.4.3)Rcpp 0.12.14 2017-11-23 CRAN(R 3.4.3)readr 1.1。 1 2017-05-16 CRAN(R 3.4.3)rgdal 1.2-16 2017-11-21 CRAN(R 3.4.3)rgeos 0.3-26 2017-10-31 CRAN(R 3.4.3)rlang 0.1.4 2017 -11-05 CRAN(R 3.4.3)sf 0.5-5 2017-10-31 CRAN(R 3.4.3)sp * 1.2-5 2017-06-29 CRAN(R 3.4.3)stats * 3.4.3 2017 -12-06 local stringi 1.1.6 2017-11-17 CRAN(R 3.4.2)stringr * 1.2.0 2017-02-18 CRAN(R 3.4.3)tibble 1.3.4 2017-08-22 CRAN(R 3.4.3)底格里斯* 0.5.3 2017-05-26 CRAN(R 3.4.3)工具3.4.3 2017-12-06本地 udunits2 0.13 2016-11-17 CRAN(R 3.4.1)单位0.4-6 2017-08-27 CRAN(R 3.4.3)utils * 3.4.3 2017-12-06本地 uuid 0.1-2 2015-07-28 CRAN(R 3.4.1)with 2.1.0 2017-11-01 CRAN(R 3.4.3)XML * 3.98-1.9 2017-06-19 CRAN(R 3.4.1)
如果你可以使用GitHub可安装的软件包(在我在CRAN上获得这个软件包之前会有所帮助)那么你可以给https://github.com/hrbrmstr/lodes一个:
devtools::install_git("https://github.com/hrbrmstr/lodes.git")
library(lodes)
library(dplyr)
de <- read_lodes("de", "od", "aux", "JT00", "2006", "~/Data/lodes")
glimpse(de)
## Observations: 68,284
## Variables: 13
## $ w_geocode <dbl> 1.000104e+14, 1.000104e+14, 1.000104e+14, 1.000104e+14, 1.000104e+14, 1.000104e+14, 1.000104e+14...
## $ h_geocode <chr> "240119550001006", "240119550001040", "240299501002080", "240299501003088", "240299503002017", "...
## $ S000 <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ SA01 <int> 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, ...
## $ SA02 <int> 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, ...
## $ SA03 <int> 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ...
## $ SE01 <int> 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, ...
## $ SE02 <int> 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, ...
## $ SE03 <int> 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, ...
## $ SI01 <int> 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, ...
## $ SI02 <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
## $ SI03 <int> 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, ...
## $ createdate <int> 20160228, 20160228, 20160228, 20160228, 20160228, 20160228, 20160228, 20160228, 20160228, 201602...
它具有读取和缓存人行横道文件的功能以及读取和缓存单个数据文件的功能。
如果您仍然遇到SSL故障,请告诉我,如果是,请将devtools::session_info()
或sessionInfo()
的输出添加到您的问题中。
我找到了解决方案here。它并不完美,因为它将文件加载到内存中,而不是将它们保存到磁盘上。但它对我有用。
years.to.download <- c(2002,2004,2014)
options(scipen = 999) # Supress scientific notation so we can see census geocodes
library(plyr); library(dplyr)
library(downloader) # downloads and then runs the source() function on scripts from github
library(R.utils) # load the R.utils package (counts the number of lines in a file quickly)
# Program start ----------------------------------------------------------------
tf <- tempfile(); td <- tempdir() # Create a temporary file and a temporary directory
# Load the download.cache and related functions
# to prevent re-downloading of files once they've been downloaded.
source_url(
"https://raw.github.com/ajdamico/asdfree/master/Download%20Cache/download%20cache.R",
prompt = FALSE,
echo = FALSE
)
# Loop through and download each year specified by the user
for(year in years.to.download) {
cat("now loading", year, "...", '\n\r')
#-----------Data import: residence area characteristics---------------------
# Data import: workplace area characteristics (i.e. job location data)
# Download each year of data
# Zipped file to the temporary file on your local disk
# S000 references all workforce segments
# JT00 references all job types
download_cached(
url = paste0("http://lehd.ces.census.gov/data/lodes/LODES7/ca/wac/ca_wac_S000_JT00_", year, ".csv.gz"),
destfile = tf,
mode = 'wb'
)
# Create a variable to store the wac file for each year
assign(paste0("wac.", year), read.table(gzfile(tf), header = TRUE, sep = ",",
colClasses = "numeric", stringsAsFactors = FALSE))
# Remove the temporary file from the local disk
file.remove(tf)
# And free up RAM
gc()
#-----------Data import: residence area characteristics---------------------
download_cached(
url = paste0("http://lehd.ces.census.gov/data/lodes/LODES7/ca/rac/ca_rac_S000_JT00_", year, ".csv.gz"),
destfile = tf,
mode = 'wb'
)
# Create a variable to store the rac file for each year
assign(paste0("rac.", year), read.table(gzfile(tf), header = TRUE, sep = ",",
colClasses = "numeric", stringsAsFactors = FALSE))
# Remove the temporary file from the local disk
file.remove(tf)
# And free up RAM
gc()
}