将 xtabond 调用从 Stata 转换为 R

问题描述 投票:0回答:1

我正在尝试复制一项特定研究的结果。该研究使用 Stata 中的

xtabond
命令来运行具有因变量滞后的 Arellano-Bond 估计器。该研究的目标是评估 N 个单位处于 4 年周期(该周期在 50 年期间重复)的 X 年的影响。

Stata中的调用是:

xtabond rpcexp_annual election election_3 election_2 rpcinc_annual rpcgrants_annual unem popmillions_annual kidsaged rr dd y1974 y1975 y1976 y1977 y1978 y1979 y1980 y1981 y1982 y1983 y1984 y1985 y1986 if stcode!=2 & stcode!=4 & stcode!=29 & stcode!=39 & stcode!=45 & stcode!=42 & year>=1974, robust maxlag(4)

我们已经尝试了 R 中的多个软件包,包括 pgmm,但无法复制结果(我们的理解是 pgmm 可能存在缺陷,如此处所述)。我们有两个问题。

首先,R 中的哪个函数允许我们复制这个命令?

其次,初始 Stata 命令中的滞后符号指的是什么?从文档中并不清楚什么是滞后的,因为外生和内生变量或工具之间没有区别。

附上可重现示例的数据:

    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float rpcexp_annual byte(election election_3 election_2) float(rpcinc_annual rpcgrants_annual unem popmillions_annual kidsaged) byte(rr dd y1974 y1975 y1976 y1978 y1979 y1980 y1981 y1982 y1983 y1984 y1985 y1986)
    1316.5624 0 0 1  9125.947  288.6954    . 3.267  35.42777 . . 0 0 0 0 0 0 0 0 0 0 0 0
    1376.9705 0 0 0  9413.523 308.77295    . 3.316 35.628387 . . 0 0 0 0 0 0 0 0 0 0 0 0
    1400.4978 1 0 0  9797.964 299.67462    . 3.323  35.90664 . . 0 0 0 0 0 0 0 0 0 0 0 0
      1495.06 0 1 0 10348.486   336.344    . 3.358  35.97399 . . 0 0 0 0 0 0 0 0 0 0 0 0
    1645.6897 0 0 1  10948.69  381.1924    . 3.395  36.14107 . . 0 0 0 0 0 0 0 0 0 0 0 0
    1803.7977 0 0 0  11418.86  477.7399    . 3.443 35.740902 . . 0 0 0 0 0 0 0 0 0 0 0 0
    1956.1627 1 0 0 11752.167  468.3919    . 3.464 35.687828 . . 0 0 0 0 0 0 0 0 0 0 0 0
    2041.5275 0 1 0  12293.09  471.9064    . 3.458  36.63967 . . 0 0 0 0 0 0 0 0 0 0 0 0
      2120.65 0 0 1 12711.763  490.5691  4.5 3.446  36.79629 0 1 0 0 0 0 0 0 0 0 0 0 0 0
    2215.6824 0 0 0 13060.082 560.79626  3.9  3.44  36.51686 0 1 0 0 0 0 0 0 0 0 0 0 0 0
     2350.494 1 0 0 13499.014  635.9165  5.9 3.444 36.453197 0 1 0 0 0 0 0 0 0 0 0 0 0 0
    2441.2668 0 1 0 14287.498  689.6812  5.5 3.497 36.071228 0 1 0 0 0 0 0 0 0 0 0 0 0 0
    2446.2986 0 0 1  15086.62  668.4541  4.5 3.539  35.72848 0 1 0 0 0 0 0 0 0 0 0 0 0 0
     2451.418 0 0 0  15173.22   679.898  4.5  3.58  35.42019 0 1 0 0 0 0 0 0 0 0 0 0 0 0
    2564.1316 1 0 0 15227.479  699.0737  5.5 3.626  35.07692 0 1 1 0 0 0 0 0 0 0 0 0 0 0
     2718.576 0 1 0  15877.83  748.5618  7.7 3.679  34.79945 0 1 0 1 0 0 0 0 0 0 0 0 0 0
    2813.7976 0 0 1 16376.425  800.3513  6.8 3.735 34.758896 0 1 0 0 1 0 0 0 0 0 0 0 0 0
     2832.032 0 0 0 16924.018  800.6426  7.4  3.78  35.31165 0 1 0 0 0 0 0 0 0 0 0 0 0 0
     2824.152 1 0 0 16975.473  802.2593  6.3 3.832  35.08583 0 1 0 0 0 1 0 0 0 0 0 0 0 0
      2782.23 0 1 0 16537.809  793.6146  7.1 3.866  34.65111 0 1 0 0 0 0 1 0 0 0 0 0 0 0
      2736.76 0 0 1 16428.512  740.1887  8.8 3.894  33.53878 0 1 0 0 0 0 0 1 0 0 0 0 0 0
     2794.776 0 0 0  16380.41  656.3935 10.7 3.919  33.00229 0 1 0 0 0 0 0 0 1 0 0 0 0 0
      2881.61 1 0 0  16777.41  625.9977 14.4 3.925  32.70743 0 1 0 0 0 0 0 0 0 1 0 0 0 0
     2908.602 0 1 0  17656.92   640.411 13.7 3.934   32.4413 0 1 0 0 0 0 0 0 0 0 1 0 0 0
     3107.953 0 0 1 18356.063  695.7643 11.1 3.952  32.33893 0 1 0 0 0 0 0 0 0 0 0 1 0 0
     3309.771 0 0 0 18958.783  704.9506  8.9 3.973  32.34709 0 1 0 0 0 0 0 0 0 0 0 0 1 0
    3230.8005 1 0 0 19360.621   664.225  9.8 3.992  32.44691 0 1 0 0 0 0 0 0 0 0 0 0 0 1
    3279.5334 0 1 0  19815.21  736.0481  7.8 4.015 32.532257 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    3394.6855 0 0 1  20468.39  698.1594  7.2 4.024  32.38347 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     3514.046 0 0 0  20736.43  719.9347    7  4.03  32.39437 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     3669.283 1 0 0 20748.943  773.0032  6.9  4.04  33.16011 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     3877.976 0 1 0  21135.86  838.7319  7.2 4.099   31.8731 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    3900.5786 0 0 1 21194.834  902.0014  7.4 4.154  31.80135 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     3996.209 0 0 0  21507.75  904.3861  7.6 4.214  31.50653 0 1 0 0 0 0 0 0 0 0 0 0 0 0
     4111.263 1 0 0  21879.33  914.1227    6  4.26  31.47955 0 1 0 0 0 0 0 0 0 0 0 0 0 0
    4186.5776 0 1 0  22021.05  916.8386  6.3 4.297  31.27467 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     4228.099 0 0 1  22351.08  934.7521  5.1 4.331  31.18011 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    4401.7114 0 0 0  23063.37  1014.215  5.1 4.368  31.03124 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     4634.854 1 0 0  23431.49 1073.6261  4.2 4.405  31.23361 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     4894.457 0 1 0  23716.32 1129.3009  4.8  4.43  30.73455 0 1 0 0 0 0 0 0 0 0 0 0 0 0
            . 0 0 1         .         .  4.5 4.447  31.60606 0 1 0 0 0 0 0 0 0 0 0 0 0 0
    2311.1653 0 0 1  16617.84  847.2505    .  .226         . . . 0 0 0 0 0 0 0 0 0 0 0 0
    2852.0886 0 0 0  16158.52  929.4943    .  .238         . . . 0 0 0 0 0 0 0 0 0 0 0 0
     3365.185 1 0 0 16487.813 1113.9612    .  .246         . . . 0 0 0 0 0 0 0 0 0 0 0 0
    3939.2825 0 1 0 17478.406 1547.7615    .  .256         . . . 0 0 0 0 0 0 0 0 0 0 0 0
     4497.172 0 0 1 18493.336  2104.962    .  .263         . . . 0 0 0 0 0 0 0 0 0 0 0 0
    4830.5137 0 0 0 19254.928 2135.0315    .  .271         . . . 0 0 0 0 0 0 0 0 0 0 0 0
     5464.552 1 0 0  20194.69 2389.3037    .  .271         . . . 0 0 0 0 0 0 0 0 0 0 0 0
     5894.966 0 1 0  20868.88 2505.1936    .  .278         . . . 0 0 0 0 0 0 0 0 0 0 0 0
     5609.474 0 0 1  21730.25  1989.375    .  .285         . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
     5705.096 0 0 0  22923.81 1670.6044    .  .296         . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
      6835.52 1 0 0  23653.85 1864.8027    .  .303         . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     8433.653 0 1 0  24286.54  2188.944    .  .316         . 0 1 0 0 0 0 0 0 0 0 0 0 0 0
     9179.755 0 0 1 25687.615 2311.7124    .  .324         . 0 1 0 0 0 0 0 0 0 0 0 0 0 0
    8912.5205 0 0 0 27708.854 2321.8918    .  .331         . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     8486.839 1 0 0   31254.2 2227.4233    .  .341         . 0 0 1 0 0 0 0 0 0 0 0 0 0 0
     8607.662 0 1 0 34856.113 2262.1702    .  .376         . 0 0 0 1 0 0 0 0 0 0 0 0 0 0
     9146.642 0 0 1 35365.742 2262.9238    8  .401  28.92051 0 0 0 0 1 0 0 0 0 0 0 0 0 0
     9563.523 0 0 0  33771.79  2229.545  9.4  .403        29 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    10327.962 1 0 0  32091.33 2159.0454 11.2  .405      28.3 0 0 0 0 0 1 0 0 0 0 0 0 0 0
    11982.192 0 1 0  31357.47 2150.9333  9.2  .403      27.9 0 0 0 0 0 0 1 0 0 0 0 0 0 0
    13077.068 0 0 1 31373.104 2173.8315  9.7  .402      25.8 0 0 0 0 0 0 0 1 0 0 0 0 0 0
     13513.48 0 0 0   32238.6 1904.3528  9.3  .418      25.1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
     14328.63 1 0 0  33115.49 1655.2924  9.9   .45      24.7 0 0 0 0 0 0 0 0 0 1 0 0 0 0
    14726.245 0 1 0  32742.28  1599.464 10.3  .488      24.3 0 0 0 0 0 0 0 0 0 0 1 0 0 0
    14798.727 0 0 1   32428.8  1584.992   10  .514      24.3 0 0 0 0 0 0 0 0 0 0 0 1 0 0
    14743.357 0 0 0  31843.23  1483.284  9.7  .532      24.3 0 0 0 0 0 0 0 0 0 0 0 0 1 0
    14645.305 1 0 0 30247.625 1473.2877 10.8  .544      24.2 0 0 0 0 0 0 0 0 0 0 0 0 0 1
     14073.73 0 1 0 29168.084 1855.4728 10.8  .539      24.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    13384.085 0 0 1  29509.66  1938.952  9.3  .542      24.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    13105.982 0 0 0 30133.895  1718.062  6.7  .547        25 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    12707.703 1 0 0  29759.19 1746.5212    7   .55      25.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    12542.252 0 1 0  29238.13  1781.084  8.7   .57      25.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    12372.348 0 0 1   29222.5  1893.831  9.2  .589      26.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    12137.702 0 0 0 29192.496  1971.333  7.7  .599      26.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    11982.547 1 0 0  28979.56 1981.7893  7.8  .603  27.04224 0 0 0 0 0 0 0 0 0 0 0 0 0 0
      11708.7 0 1 0   28569.2  2025.486  7.3  .604  27.41656 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    11633.382 0 0 1 28504.266 2068.8638  7.8  .609  27.44053 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    11718.472 0 0 0  28909.61 2123.8718  7.9  .613   28.1243 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    11835.538 1 0 0 29073.613 2205.6846  5.8   .62   28.7899 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    12135.523 0 1 0   29462.7 2265.7112  6.4  .625  29.30968 0 0 0 0 0 0 0 0 0 0 0 0 0 0
            . 0 0 1         .         .  6.7  .627  28.52963 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    1880.2672 1 . . 12130.445  289.0184    . 1.302 33.343147 . . 0 0 0 0 0 0 0 0 0 0 0 0
     1994.296 0 . . 12234.726 303.12503    . 1.407 33.878998 . . 0 0 0 0 0 0 0 0 0 0 0 0
    2069.7703 1 . . 12379.693  328.9912    . 1.471  34.31105 . . 0 0 0 0 0 0 0 0 0 0 0 0
    2125.8398 0 . . 12616.122   340.135    . 1.521  34.67369 . . 0 0 0 0 0 0 0 0 0 0 0 0
     2231.752 1 . . 13008.673  390.7931    . 1.556  35.24855 . . 0 0 0 0 0 0 0 0 0 0 0 0
     2390.786 0 . .   13467.5  471.8137    . 1.584  35.30158 . . 0 0 0 0 0 0 0 0 0 0 0 0
     2599.287 1 . . 13973.276  537.7237    . 1.614  35.93263 . . 0 0 0 0 0 0 0 0 0 0 0 0
     2677.664 0 . .  14748.19   558.815    . 1.646  35.84447 . . 0 0 0 0 0 0 0 0 0 0 0 0
     2640.892 1 . .  15805.41 524.65796  3.6 1.682  36.26635 1 0 0 0 0 0 0 0 0 0 0 0 0 0
    2717.9175 0 . .  16762.72  522.0126  2.9 1.737  35.73829 1 0 0 0 0 0 0 0 0 0 0 0 0 0
     2854.258 1 0 0 17413.816  531.3039  4.1 1.775 36.049107 1 0 0 0 0 0 0 0 0 0 0 0 0 0
     3042.169 0 1 0 18050.035  531.0124  4.5 1.896   37.0985 1 0 0 0 0 0 0 0 0 0 0 0 0 0
     3121.365 0 0 1 18783.205 571.12964  3.8 2.008 35.863472 1 0 0 0 0 0 0 0 0 0 0 0 0 0
     3047.864 0 0 0 18822.143  584.3438  3.6 2.124  34.97347 1 0 0 0 0 0 0 0 0 0 0 0 0 0
    3112.0754 1 0 0 18161.543  576.8924  5.6 2.223  34.81687 1 0 1 0 0 0 0 0 0 0 0 0 0 0
    3286.8125 0 1 0 18074.033  610.4025 12.1 2.285   34.6745 0 0 0 1 0 0 0 0 0 0 0 0 0 0
     3390.967 0 0 1 18615.066  624.2149  9.8 2.346 33.973885 0 0 0 0 1 0 0 0 0 0 0 0 0 0
     3370.134 0 0 0 19383.855  654.8785  8.2 2.425 35.583622 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    end

这次gmm的结果应该是:

Results of xtabond call

请帮助在 R 中重现此结果。

r stata panel-data code-conversion generalized-method-of-moments
1个回答
0
投票

此选项表示最多使用滞后 4 来检测预定变量和内生变量。

如果您想以不同的方式处理变量,您可以使用

pre(varlist [, lagstruct(prelags, premaxlags)])
endogenous(varlist [, lagstruct(endlags, endmaxlags)])

您可以通过重复选项让每个变量拥有自己的滞后结构(或具有类似处理的变量组):

webuse abdata
xtabond n l(0/2).ys yr1980-yr1984, lags(2) endogenous(w, lag(1,4)) endogenous(k, lag(2,3))

在 R 中,我会尝试使用

plm
包。 看起来你已经排除了这种可能性,我不确定是否有更好的东西。让我提供解决此类问题的策略。

首先,尝试安装 dev 版本的 plm。有时,如果 CRAN 上的版本过时,这会起作用。

其次,确保您的摘要统计数据与作者相符,以排除数据问题。

第三,我也不认为有任何 bug,因为 SO 上的一些用户报告说,虽然 GitHub 上没有问题。这些模型在任何语言中都可能很挑剔。尝试在公共数据集上复制最简单的模型,然后按照与您尝试做的类似的方向增加复杂性,直到 R 和 Stata 之间出现分歧。如果您无法弄清楚这一点,请在 GitHub 上提交错误请求并提供可重现的示例Cameron 和 Trivedi 的 MUS 在 Stata 中有许多示例和可访问的数据。如果您无法从图书馆获取第二版,那么第一版很便宜。我认为 Baltagi 和 Hsiao 小组数据书可能也有一些可重复的例子。

我还会尝试使用作者使用的相同版本的软件包复制 Stata 代码,然后使用最新的软件包。有时会有错误修复,因此您试图用同一种语言复制本身就有错误的东西,这可能是不可能的。这依赖于对 Stata 的访问,甚至可能是旧版本。

最新问题
© www.soinside.com 2019 - 2025. All rights reserved.