我正在尝试复制一项特定研究的结果。该研究使用 Stata 中的
xtabond
命令来运行具有因变量滞后的 Arellano-Bond 估计器。该研究的目标是评估 N 个单位处于 4 年周期(该周期在 50 年期间重复)的 X 年的影响。
Stata中的调用是:
xtabond rpcexp_annual election election_3 election_2 rpcinc_annual rpcgrants_annual unem popmillions_annual kidsaged rr dd y1974 y1975 y1976 y1977 y1978 y1979 y1980 y1981 y1982 y1983 y1984 y1985 y1986 if stcode!=2 & stcode!=4 & stcode!=29 & stcode!=39 & stcode!=45 & stcode!=42 & year>=1974, robust maxlag(4)
我们已经尝试了 R 中的多个软件包,包括 pgmm,但无法复制结果(我们的理解是 pgmm 可能存在缺陷,如此处所述)。我们有两个问题。
首先,R 中的哪个函数允许我们复制这个命令?
其次,初始 Stata 命令中的滞后符号指的是什么?从文档中并不清楚什么是滞后的,因为外生和内生变量或工具之间没有区别。
附上可重现示例的数据:
* Example generated by -dataex-. To install: ssc install dataex
clear
input float rpcexp_annual byte(election election_3 election_2) float(rpcinc_annual rpcgrants_annual unem popmillions_annual kidsaged) byte(rr dd y1974 y1975 y1976 y1978 y1979 y1980 y1981 y1982 y1983 y1984 y1985 y1986)
1316.5624 0 0 1 9125.947 288.6954 . 3.267 35.42777 . . 0 0 0 0 0 0 0 0 0 0 0 0
1376.9705 0 0 0 9413.523 308.77295 . 3.316 35.628387 . . 0 0 0 0 0 0 0 0 0 0 0 0
1400.4978 1 0 0 9797.964 299.67462 . 3.323 35.90664 . . 0 0 0 0 0 0 0 0 0 0 0 0
1495.06 0 1 0 10348.486 336.344 . 3.358 35.97399 . . 0 0 0 0 0 0 0 0 0 0 0 0
1645.6897 0 0 1 10948.69 381.1924 . 3.395 36.14107 . . 0 0 0 0 0 0 0 0 0 0 0 0
1803.7977 0 0 0 11418.86 477.7399 . 3.443 35.740902 . . 0 0 0 0 0 0 0 0 0 0 0 0
1956.1627 1 0 0 11752.167 468.3919 . 3.464 35.687828 . . 0 0 0 0 0 0 0 0 0 0 0 0
2041.5275 0 1 0 12293.09 471.9064 . 3.458 36.63967 . . 0 0 0 0 0 0 0 0 0 0 0 0
2120.65 0 0 1 12711.763 490.5691 4.5 3.446 36.79629 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2215.6824 0 0 0 13060.082 560.79626 3.9 3.44 36.51686 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2350.494 1 0 0 13499.014 635.9165 5.9 3.444 36.453197 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2441.2668 0 1 0 14287.498 689.6812 5.5 3.497 36.071228 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2446.2986 0 0 1 15086.62 668.4541 4.5 3.539 35.72848 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2451.418 0 0 0 15173.22 679.898 4.5 3.58 35.42019 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2564.1316 1 0 0 15227.479 699.0737 5.5 3.626 35.07692 0 1 1 0 0 0 0 0 0 0 0 0 0 0
2718.576 0 1 0 15877.83 748.5618 7.7 3.679 34.79945 0 1 0 1 0 0 0 0 0 0 0 0 0 0
2813.7976 0 0 1 16376.425 800.3513 6.8 3.735 34.758896 0 1 0 0 1 0 0 0 0 0 0 0 0 0
2832.032 0 0 0 16924.018 800.6426 7.4 3.78 35.31165 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2824.152 1 0 0 16975.473 802.2593 6.3 3.832 35.08583 0 1 0 0 0 1 0 0 0 0 0 0 0 0
2782.23 0 1 0 16537.809 793.6146 7.1 3.866 34.65111 0 1 0 0 0 0 1 0 0 0 0 0 0 0
2736.76 0 0 1 16428.512 740.1887 8.8 3.894 33.53878 0 1 0 0 0 0 0 1 0 0 0 0 0 0
2794.776 0 0 0 16380.41 656.3935 10.7 3.919 33.00229 0 1 0 0 0 0 0 0 1 0 0 0 0 0
2881.61 1 0 0 16777.41 625.9977 14.4 3.925 32.70743 0 1 0 0 0 0 0 0 0 1 0 0 0 0
2908.602 0 1 0 17656.92 640.411 13.7 3.934 32.4413 0 1 0 0 0 0 0 0 0 0 1 0 0 0
3107.953 0 0 1 18356.063 695.7643 11.1 3.952 32.33893 0 1 0 0 0 0 0 0 0 0 0 1 0 0
3309.771 0 0 0 18958.783 704.9506 8.9 3.973 32.34709 0 1 0 0 0 0 0 0 0 0 0 0 1 0
3230.8005 1 0 0 19360.621 664.225 9.8 3.992 32.44691 0 1 0 0 0 0 0 0 0 0 0 0 0 1
3279.5334 0 1 0 19815.21 736.0481 7.8 4.015 32.532257 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3394.6855 0 0 1 20468.39 698.1594 7.2 4.024 32.38347 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3514.046 0 0 0 20736.43 719.9347 7 4.03 32.39437 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3669.283 1 0 0 20748.943 773.0032 6.9 4.04 33.16011 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3877.976 0 1 0 21135.86 838.7319 7.2 4.099 31.8731 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3900.5786 0 0 1 21194.834 902.0014 7.4 4.154 31.80135 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3996.209 0 0 0 21507.75 904.3861 7.6 4.214 31.50653 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4111.263 1 0 0 21879.33 914.1227 6 4.26 31.47955 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4186.5776 0 1 0 22021.05 916.8386 6.3 4.297 31.27467 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4228.099 0 0 1 22351.08 934.7521 5.1 4.331 31.18011 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4401.7114 0 0 0 23063.37 1014.215 5.1 4.368 31.03124 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4634.854 1 0 0 23431.49 1073.6261 4.2 4.405 31.23361 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4894.457 0 1 0 23716.32 1129.3009 4.8 4.43 30.73455 0 1 0 0 0 0 0 0 0 0 0 0 0 0
. 0 0 1 . . 4.5 4.447 31.60606 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2311.1653 0 0 1 16617.84 847.2505 . .226 . . . 0 0 0 0 0 0 0 0 0 0 0 0
2852.0886 0 0 0 16158.52 929.4943 . .238 . . . 0 0 0 0 0 0 0 0 0 0 0 0
3365.185 1 0 0 16487.813 1113.9612 . .246 . . . 0 0 0 0 0 0 0 0 0 0 0 0
3939.2825 0 1 0 17478.406 1547.7615 . .256 . . . 0 0 0 0 0 0 0 0 0 0 0 0
4497.172 0 0 1 18493.336 2104.962 . .263 . . . 0 0 0 0 0 0 0 0 0 0 0 0
4830.5137 0 0 0 19254.928 2135.0315 . .271 . . . 0 0 0 0 0 0 0 0 0 0 0 0
5464.552 1 0 0 20194.69 2389.3037 . .271 . . . 0 0 0 0 0 0 0 0 0 0 0 0
5894.966 0 1 0 20868.88 2505.1936 . .278 . . . 0 0 0 0 0 0 0 0 0 0 0 0
5609.474 0 0 1 21730.25 1989.375 . .285 . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
5705.096 0 0 0 22923.81 1670.6044 . .296 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6835.52 1 0 0 23653.85 1864.8027 . .303 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8433.653 0 1 0 24286.54 2188.944 . .316 . 0 1 0 0 0 0 0 0 0 0 0 0 0 0
9179.755 0 0 1 25687.615 2311.7124 . .324 . 0 1 0 0 0 0 0 0 0 0 0 0 0 0
8912.5205 0 0 0 27708.854 2321.8918 . .331 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8486.839 1 0 0 31254.2 2227.4233 . .341 . 0 0 1 0 0 0 0 0 0 0 0 0 0 0
8607.662 0 1 0 34856.113 2262.1702 . .376 . 0 0 0 1 0 0 0 0 0 0 0 0 0 0
9146.642 0 0 1 35365.742 2262.9238 8 .401 28.92051 0 0 0 0 1 0 0 0 0 0 0 0 0 0
9563.523 0 0 0 33771.79 2229.545 9.4 .403 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10327.962 1 0 0 32091.33 2159.0454 11.2 .405 28.3 0 0 0 0 0 1 0 0 0 0 0 0 0 0
11982.192 0 1 0 31357.47 2150.9333 9.2 .403 27.9 0 0 0 0 0 0 1 0 0 0 0 0 0 0
13077.068 0 0 1 31373.104 2173.8315 9.7 .402 25.8 0 0 0 0 0 0 0 1 0 0 0 0 0 0
13513.48 0 0 0 32238.6 1904.3528 9.3 .418 25.1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
14328.63 1 0 0 33115.49 1655.2924 9.9 .45 24.7 0 0 0 0 0 0 0 0 0 1 0 0 0 0
14726.245 0 1 0 32742.28 1599.464 10.3 .488 24.3 0 0 0 0 0 0 0 0 0 0 1 0 0 0
14798.727 0 0 1 32428.8 1584.992 10 .514 24.3 0 0 0 0 0 0 0 0 0 0 0 1 0 0
14743.357 0 0 0 31843.23 1483.284 9.7 .532 24.3 0 0 0 0 0 0 0 0 0 0 0 0 1 0
14645.305 1 0 0 30247.625 1473.2877 10.8 .544 24.2 0 0 0 0 0 0 0 0 0 0 0 0 0 1
14073.73 0 1 0 29168.084 1855.4728 10.8 .539 24.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13384.085 0 0 1 29509.66 1938.952 9.3 .542 24.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13105.982 0 0 0 30133.895 1718.062 6.7 .547 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12707.703 1 0 0 29759.19 1746.5212 7 .55 25.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12542.252 0 1 0 29238.13 1781.084 8.7 .57 25.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12372.348 0 0 1 29222.5 1893.831 9.2 .589 26.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12137.702 0 0 0 29192.496 1971.333 7.7 .599 26.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11982.547 1 0 0 28979.56 1981.7893 7.8 .603 27.04224 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11708.7 0 1 0 28569.2 2025.486 7.3 .604 27.41656 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11633.382 0 0 1 28504.266 2068.8638 7.8 .609 27.44053 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11718.472 0 0 0 28909.61 2123.8718 7.9 .613 28.1243 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11835.538 1 0 0 29073.613 2205.6846 5.8 .62 28.7899 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12135.523 0 1 0 29462.7 2265.7112 6.4 .625 29.30968 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. 0 0 1 . . 6.7 .627 28.52963 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1880.2672 1 . . 12130.445 289.0184 . 1.302 33.343147 . . 0 0 0 0 0 0 0 0 0 0 0 0
1994.296 0 . . 12234.726 303.12503 . 1.407 33.878998 . . 0 0 0 0 0 0 0 0 0 0 0 0
2069.7703 1 . . 12379.693 328.9912 . 1.471 34.31105 . . 0 0 0 0 0 0 0 0 0 0 0 0
2125.8398 0 . . 12616.122 340.135 . 1.521 34.67369 . . 0 0 0 0 0 0 0 0 0 0 0 0
2231.752 1 . . 13008.673 390.7931 . 1.556 35.24855 . . 0 0 0 0 0 0 0 0 0 0 0 0
2390.786 0 . . 13467.5 471.8137 . 1.584 35.30158 . . 0 0 0 0 0 0 0 0 0 0 0 0
2599.287 1 . . 13973.276 537.7237 . 1.614 35.93263 . . 0 0 0 0 0 0 0 0 0 0 0 0
2677.664 0 . . 14748.19 558.815 . 1.646 35.84447 . . 0 0 0 0 0 0 0 0 0 0 0 0
2640.892 1 . . 15805.41 524.65796 3.6 1.682 36.26635 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2717.9175 0 . . 16762.72 522.0126 2.9 1.737 35.73829 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2854.258 1 0 0 17413.816 531.3039 4.1 1.775 36.049107 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3042.169 0 1 0 18050.035 531.0124 4.5 1.896 37.0985 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3121.365 0 0 1 18783.205 571.12964 3.8 2.008 35.863472 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3047.864 0 0 0 18822.143 584.3438 3.6 2.124 34.97347 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3112.0754 1 0 0 18161.543 576.8924 5.6 2.223 34.81687 1 0 1 0 0 0 0 0 0 0 0 0 0 0
3286.8125 0 1 0 18074.033 610.4025 12.1 2.285 34.6745 0 0 0 1 0 0 0 0 0 0 0 0 0 0
3390.967 0 0 1 18615.066 624.2149 9.8 2.346 33.973885 0 0 0 0 1 0 0 0 0 0 0 0 0 0
3370.134 0 0 0 19383.855 654.8785 8.2 2.425 35.583622 0 0 0 0 0 0 0 0 0 0 0 0 0 0
end
这次gmm的结果应该是:
请帮助在 R 中重现此结果。
此选项表示最多使用滞后 4 来检测预定变量和内生变量。
如果您想以不同的方式处理变量,您可以使用
pre(varlist [, lagstruct(prelags, premaxlags)])
和 endogenous(varlist [, lagstruct(endlags, endmaxlags)])
。
您可以通过重复选项让每个变量拥有自己的滞后结构(或具有类似处理的变量组):
webuse abdata
xtabond n l(0/2).ys yr1980-yr1984, lags(2) endogenous(w, lag(1,4)) endogenous(k, lag(2,3))
在 R 中,我会尝试使用
plm
首先,尝试安装 dev 版本的 plm。有时,如果 CRAN 上的版本过时,这会起作用。
其次,确保您的摘要统计数据与作者相符,以排除数据问题。
第三,我也不认为有任何 bug,因为 SO 上的一些用户报告说,虽然 GitHub 上没有问题。这些模型在任何语言中都可能很挑剔。尝试在公共数据集上复制最简单的模型,然后按照与您尝试做的类似的方向增加复杂性,直到 R 和 Stata 之间出现分歧。如果您无法弄清楚这一点,请在 GitHub 上提交错误请求并提供可重现的示例。 Cameron 和 Trivedi 的 MUS 在 Stata 中有许多示例和可访问的数据。如果您无法从图书馆获取第二版,那么第一版很便宜。我认为 Baltagi 和 Hsiao 小组数据书可能也有一些可重复的例子。
我还会尝试使用作者使用的相同版本的软件包复制 Stata 代码,然后使用最新的软件包。有时会有错误修复,因此您试图用同一种语言复制本身就有错误的东西,这可能是不可能的。这依赖于对 Stata 的访问,甚至可能是旧版本。