假设我有original_image:作为(451, 521, 3)
形状。
它在某些位置包含[0,0,0] RGB值。
我想用[0,0,0]
替换所有[0,255,0]
我试过的是
我创建了具有True
的面具,其中[0,0,0]
位于original_image
那面具有(451, 521)
形状
我以为我可以使用以下
new_original_image=original_image[mask]
但事实证明new_original_image
只是一个数组(形状像(18,3))其所有元素(例如,[[ 97 68 108],[127 99 139],[156 130 170],...]
)都被mask
的original_image
数组的True过滤掉了
这是一种方式
idx=np.all(np.vstack(a)==np.array([0,0,5]),1)
a1=np.vstack(a)
a1[idx]=[0,0,0]
yourary=a1.reshape(2,-1,3)
Out[150]:
array([[[0, 0, 0],
[0, 0, 1],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 1],
[0, 0, 0],
[0, 0, 0]]])
数据输入
a
Out[133]:
array([[[0, 0, 0],
[0, 0, 1],
[0, 0, 5],
[0, 0, 5]],
[[0, 0, 0],
[0, 0, 1],
[0, 0, 5],
[0, 0, 5]]])
我想用[0,255,0]替换所有[0,0,0]
import cv2
img = cv2.imread("test.jpg")
rows, cols, channels = img.shape
for r in range(rows):
for c in range(cols):
if np.all(img[r,c][0]==[0,0,0]):
img[r,c]=[0,255,0]
根据Wen-Ben的回复解决方案,我尝试编写我想要实现的详细代码片段
# original_image which contains [0,0,0] at several location
# in 2 (last) axis from (451, 521, 3) shape image
# Stack original_image or using original_image.reshape((-1,3)) is also working
stacked=np.vstack(original_image)
# print(stacked.shape)
# (234971, 3)
# Create mask array which has True where [0,0,0] are located in stacked array
idx=np.all(stacked==[0,0,0],1)
# print(idxs.shape)
# (234971,)
# Replace existing values which are filtered by idx with [0,255,0]
stacked[idx]=[0,255,0]
# Back to original image shape
original_image_new=stacked.reshape(original_image.shape[0],original_image.shape[1],3)
# print(original_image_new.shape)
# (451, 521, 3)