如何在列表中保存英特尔实感图像(pyrealsense2)

问题描述 投票:0回答:1

我正在尝试将 Intel Realsense D435i 相机的深度和彩色图像保存在 300 张图像的列表中。然后我将使用多处理将这 300 张图像保存到我的磁盘上。但是每次我尝试,程序都会成功地在列表中附加 15 张图像,然后我得到这个错误:

    Frame didn't arrived within 5000

我确保我在 python 3.6 上安装了 64 位版本,并且当我不尝试将图像保存在列表中时,相机的流式传输非常好。真实感查看器也很好用。我也尝试过不同的分辨率和帧率,但它似乎也不起作用。有趣的是,如果我只保存彩色图像,我不会得到相同的错误,而是会在列表中一遍又一遍地得到相同的彩色图像。

if __name__ == '__main__':
pipeline = rs.pipeline()
config = rs.config()

config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)
profile = pipeline.start(config)

depth_sensor = profile.get_device().first_depth_sensor()
depth_sensor.set_option(
    rs.option.visual_preset, 3
)  # Set high accuracy for depth sensor
depth_scale = depth_sensor.get_depth_scale()

align_to = rs.stream.color
align = rs.align(align_to)

#   Init variables
im_count = 0
image_chunk = []
image_chunk2 = []
# sentinel = True
try:
    while True:

        # Wait for a coherent pair of frames: depth and color
        frames = pipeline.wait_for_frames()
        aligned_frames = align.process(frames)
        aligned_depth_frame = aligned_frames.get_depth_frame()
        color_frame = aligned_frames.get_color_frame()


        if not aligned_depth_frame or not color_frame:
            print("problem here")
            raise RuntimeError("Could not acquire depth or color frames.")

        depth_image = np.asanyarray(aligned_depth_frame.get_data())
        color_image = np.asanyarray(color_frame.get_data())

        image_chunk.append(color_image)
        image_chunk2.append(depth_image)




except Exception as e:
    print(e)

finally:
    # Stop streaming
    pipeline.stop()

我只是需要它来连续保存300张图像,仅此而已,所以我很困惑是什么导致了这个问题。

python intel realsense
1个回答
3
投票

握住相框会锁定内存,最终会达到极限,从而无法获取更多图像。即使您正在创建图像,数据仍然来自框架。您需要在创建图像后克隆图像以释放到框架内存的链接。

depth_image = np.asanyarray(aligned_depth_frame.get_data())
color_image = np.asanyarray(color_frame.get_data())

depth_image = depth_image.copy()
color_image = color_image.copy()

image_chunk.append(color_image)
image_chunk2.append(depth_image)

在此处阅读有关帧和内存管理的更多信息: https://dev.intelrealsense.com/docs/frame-management

我创建了一个包装类来从框架集中提取各种元素,这些元素以后无法重新创建。它有点沉重,但展示了一些可能对其他人有帮助的常见操作:

# import the necessary packages
import logging

import cv2 as cv2
import numpy as np
import pyrealsense2 as rs

# create local logger to allow adjusting verbosity at the module level
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

colorizer = None
align_to_depth = None
align_to_color = None
pointcloud = None


class IntelD435ImagePacket:
    """
    Class that contains image and associated processing data.
    """

    @property
    def frame_id(self):
        return self._frame_id

    @property
    def timestamp(self):
        return self._timestamp

    @property
    def image_color(self):
        return self._image_color

    @property
    def image_depth(self):
        return self._image_depth

    @property
    def image_color_aligned(self):
        if self._image_color_aligned is None:
            self._image_color_aligned = self._align_color_to_depth(self.image_color, self.depth_intrinsics,
                                                                   self.color_intrinsics,
                                                                   self.color_to_depth_extrinsics)
        return self._image_color_aligned

    @property
    def image_depth_aligned(self):
        if self._image_depth_aligned is None:
            self._image_depth_aligned = self._align_depth_to_color(self.image_depth, self.depth_intrinsics,
                                                                   self.color_intrinsics,
                                                                   self.depth_to_color_extrinsics)
        return self._image_depth_aligned

    @property
    def image_depth_colorized(self, colormap=None, min_value=None, max_value=None, visual_preset=None):
        if self._image_depth_colorized is None:
            self._image_depth_colorized = self._colorize(self.image_depth, colormap, min_value, max_value, visual_preset)
        return self._image_depth_colorized

    @property
    def image_depth_8U(self, min_value=None, max_value=None):
        if min_value is None:
            min_value = np.amin(self.image_depth)
        if max_value is None:
            max_value = np.amax(self.image_depth)
        if (self._image_depth_8U_min != min_value) or (self._image_depth_8U_max != max_value):
            self._image_depth_8U = None
        if self._image_depth_8U is None:
            self._image_depth_8U_min = min_value
            self._image_depth_8U_max = max_value
            self._image_depth_8U = self._convert_to_GRAY_8U(self.image_depth, min_value, max_value)
        return self._image_depth_8U

    @property
    def depth_intrinsics(self):
        return self._depth_intrinsics

    @property
    def color_intrinsics(self):
        return self._color_intrinsics

    @property
    def depth_to_color_extrinsics(self):
        return self._depth_to_color_extrinsics

    @property
    def color_to_depth_extrinsics(self):
        return self._color_to_depth_extrinsics

    @property
    def pointcloud(self):
        if self._pointcloud is None:
            self._pointcloud = self._create_pointcloud(self.image_depth, self.depth_intrinsics).reshape(-1, 3)
        return self._pointcloud

    @property
    def pointcloud_texture(self):
        if self._pointcloud is None:
            self._pointcloud_texture = self._create_pointcloud_texture(self.image_color, self.color_intrinsics,
                                                                       self.color_to_depth_extrinsics).reshape(-1, 3)
        return self._pointcloud_texture

    @staticmethod
    def _align_color_to_depth(image_color, depth_intrinsics, color_intrinsics, color_to_depth_extrinsics):
        convert_3x3_to_4x4 = np.eye(3, 4)
        convert_4x4_to_3x3 = np.eye(4, 3)
        H = depth_intrinsics @ convert_3x3_to_4x4 @ color_to_depth_extrinsics @ convert_4x4_to_3x3 @ np.linalg.inv(
            color_intrinsics)
        H = H / H[2][2]
        return cv2.warpPerspective(image_color, H, (image_color.shape[1], image_color.shape[0]))

    @staticmethod
    def _align_depth_to_color(image_depth, depth_intrinsics, color_intrinsics, depth_to_color_extrinsics):
        convert_3x3_to_4x4 = np.eye(3, 4)
        convert_4x4_to_3x3 = np.eye(4, 3)
        H = color_intrinsics @ convert_3x3_to_4x4 @ depth_to_color_extrinsics @ convert_4x4_to_3x3 @ np.linalg.inv(
            depth_intrinsics)
        H = H / H[2][2]
        return cv2.warpPerspective(image_depth, H, (image_depth.shape[1], image_depth.shape[0]))

    def _convert_to_GRAY_8U(self, image, min_value=None, max_value=None, dynamic_range=None):
        if dynamic_range is None:
            dynamic_range = False

        # Perform grayscale conversion if needed
        image_gray = None
        if len(image.shape) == 3:
            image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        elif len(image.shape) == 2:
            image_gray = image
        else:
            raise ValueError('image was an unknown format.  Expected len(image.shape) = 2 or 3')

        # check if further processing is needed
        if dynamic_range is None and image_gray.dtype == np.uint8:
            return image_gray

        # Determine range of normalization
        if min_value is None or max_value is None:
            if dynamic_range:
                # assume full range based on min/max picel values
                if min_value is None:
                    min_value = np.amin(self.image_depth)
                if max_value is None:
                    max_value = np.amax(self.image_depth)
            else:
                # assume full range based on data type
                if np.issubdtype(image_gray.dtype, np.integer) or np.issubdtype(image_gray.dtype, np.signedinteger):
                    # int range is full range of value type
                    dtype_info = np.iinfo(image_gray.dtype)
                    if min_value is None:
                        min_value = dtype_info.min
                    if max_value is None:
                        max_value = dtype_info.max
                else:
                    # float range is 0.0-1.0
                    if min_value is None:
                        min_value = 0.0
                    if max_value is None:
                        max_value = 1.0
        # return cv2.normalize(image_gray, None, min_value, max_value, cv2.NORM_MINMAX, cv2.CV_8U)
        range_scale_factor = 255.0 / (max_value - min_value)
        return np.round((image_gray - min_value) * range_scale_factor).astype(np.uint8)

    def _colorize(self, image, colormap=None, min_value=None, max_value=None, dynamic_range=None):
        if colormap is None:
            colormap = cv2.COLORMAP_JET
        if dynamic_range is None:
            dynamic_range = True
        scaled = self._convert_to_GRAY_8U(image, min_value, max_value, dynamic_range)
        return cv2.applyColorMap(scaled, colormap)

    @staticmethod
    def _rs_colorize(depth_frame, colormap=None, min_value=None, max_value=None, visual_preset=None):
        global colorizer

        if colormap is None:
            colormap = 0
        if visual_preset is None:
            if min_value and max_value:
                visual_preset = 1
            elif min_value and max_value is None:
                visual_preset = 2
            elif min_value is None and max_value:
                visual_preset = 3
            else:
                visual_preset = 0

        # Apply options to colorizer
        if min_value:
            colorizer.set_option(rs.option.min_distance, min_value)
        if max_value:
            colorizer.set_option(rs.option.max_distance, max_value)
        # colorizer.set_option(rs.option.histogram_equalization_enabled, 0)
        colorizer.set_option(rs.option.visual_preset, visual_preset)  # 0=Dynamic, 1=Fixed, 2=Near, 3=Far
        colorizer.set_option(rs.option.color_scheme,
                             colormap)  # 0=Jet, 1=Classic, 2=WhiteToBlack, 3=BlackToWhite, 4=Bio, 5=Cold, 6=Warm, 7=Quantized, 8=Pattern

        return colorizer.colorize(depth_frame)

    @staticmethod
    def _convert_rs_intrinsics_to_opencv_matrix(rs_intrinsics):
        fx = rs_intrinsics.fx
        fy = rs_intrinsics.fy
        cx = rs_intrinsics.ppx
        cy = rs_intrinsics.ppy
        s = 0  # skew
        return np.array([[fx, s, cx],
                         [0.0, fy, cy],
                         [0.0, 0.0, 1.0]]).copy()

    @staticmethod
    def _convert_rs_extrinsics_to_opencv_matrix(rs_extrinsics):
        # https://www.brainvoyager.com/bv/doc/UsersGuide/CoordsAndTransforms/SpatialTransformationMatrices.html
        extrinsics_rotation = np.asanyarray(rs_extrinsics.rotation).reshape(3, 3).copy()
        extrinsics_translation = np.asanyarray(rs_extrinsics.translation).reshape(1, 3).copy()
        extrinsics_projection = np.concatenate((extrinsics_rotation, extrinsics_translation.T), axis=1)
        extrinsics_projection = np.concatenate((extrinsics_projection, np.array([[0, 0, 0, 1]])), axis=0)
        return extrinsics_projection  # , extrinsics_rotation, extrinsics_translation

    @staticmethod
    def _create_rs_pointcloud(pointcloud, depth_frame):
        points = pointcloud.calculate(depth_frame)
        vtx = np.asanyarray(points.get_vertices())
        return vtx.view(np.float32).reshape(vtx.shape + (-1,)).copy(), points

    @staticmethod
    def _create_rs_pointcloud_texture(pointcloud, color_frame, points):
        pointcloud.map_to(color_frame)
        tex = np.asanyarray(points.get_texture_coordinates())
        return tex.view(np.float32).reshape(tex.shape + (-1,)).copy()

    @staticmethod
    def _create_pointcloud(image_depth, depth_intrinsics):
        arr_depth = image_depth * 0.001
        cx = depth_intrinsics[0, 2]
        cy = depth_intrinsics[1, 2]
        fx = depth_intrinsics[0, 0]
        fy = depth_intrinsics[1, 1]
        arr = np.indices(arr_depth.shape).transpose(1, 2, 0).astype(arr_depth.dtype)
        arr = arr[..., ::-1]
        arr[:, :, 0] = (arr[:, :, 0] - cx) / fx * arr_depth
        arr[:, :, 1] = (arr[:, :, 1] - cy) / fy * arr_depth
        return np.dstack((arr, arr_depth))

    def _create_pointcloud_texture(self, image_color, color_intrinsics, color_to_depth_extrinsics):
        raise NotImplementedError()

    def __init__(self, frame_set, frame_id=None, timestamp=None, use_frame_blocking_methods=True, *args, **kwargs):
        # Frame must be cloned and released to allow the next acquisition to occur
        # Frame is not serializable, so the main goal is to capture the color/depth images and their intrinsics/extrinsics for downstream processing
        # It's unfortunate that the D435 doesn't provide a non-blocking way yto do this, as their built-in functions are efficient but limit performance to 15FPS
        # https://dev.intelrealsense.com/docs/projection-texture-mapping-and-occlusion-with-intel-realsense-depth-cameras
        self._use_frame_blocking_methods = use_frame_blocking_methods

        # Extract color image
        color_frame = frame_set.get_color_frame()
        self._image_color = np.asanyarray(color_frame.get_data()).copy()

        # Extract depth image
        depth_frame = frame_set.get_depth_frame()
        self._image_depth = np.asanyarray(depth_frame.get_data()).copy()

        self._pointcloud = None
        self._pointcloud_texture = None
        self._image_color_aligned = None
        self._image_depth_aligned = None
        self._image_depth_colorized = None
        self._image_depth_aligned_colorized = None
        self._image_depth_8U = None
        self._image_depth_8U_min = None
        self._image_depth_8U_max = None
        if frame_id:
            self._frame_id = frame_id
        else:
            self._frame_id = frame_set.frame_number
        if timestamp:
            self._timestamp = timestamp
        else:
            self._timestamp = frame_set.timestamp
        self.__dict__.update(kwargs)

        # Intrinsics map from camera space to world coordinate space
        # Extrinsics map within world space
        # ie, to get pixels from dept to color, intrinsic from depth to depth-in-world, extrinsics from depth-in-world to color-in-world, intrinsic from color-in-world to color

        # Get depth intrinsics
        depth_profile = frame_set.get_depth_frame().get_profile()
        depth_video_stream_profile = depth_profile.as_video_stream_profile()
        rs_depth_intrinsics = depth_video_stream_profile.get_intrinsics()
        self._depth_intrinsics = self._convert_rs_intrinsics_to_opencv_matrix(rs_depth_intrinsics)

        # Get color intrinsics
        color_profile = frame_set.get_color_frame().get_profile()
        color_video_stream_profile = color_profile.as_video_stream_profile()
        rs_color_intrinsics = color_video_stream_profile.get_intrinsics()
        self._color_intrinsics = self._convert_rs_intrinsics_to_opencv_matrix(rs_color_intrinsics)

        # Get depth_to_color extrinsics
        rs_depth_to_color_extrinsics = depth_video_stream_profile.get_extrinsics_to(color_video_stream_profile)
        self._depth_to_color_extrinsics = self._convert_rs_extrinsics_to_opencv_matrix(rs_depth_to_color_extrinsics)

        # Get color_to_depth extrinsics
        rs_color_to_depth_extrinsics = color_video_stream_profile.get_extrinsics_to(depth_video_stream_profile)
        self._color_to_depth_extrinsics = self._convert_rs_extrinsics_to_opencv_matrix(rs_color_to_depth_extrinsics)

        # https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/EPSRC_SSAZ/node3.html
        # I=intrinsic matrix, 3x3
        # E=extrinsic matrix, 3x3
        # project 3D points to images
        # cv2.Rodrigues(rotation1, rvec1); // 3x3 rot matrix to 3x1
        # image_pixel_points = cv2.projectPoints(1xN 3dpoints vector, np.zeros(3), np.zeros(3), cameraMatrix, None)
        # image_pixels_array = image_pixels_array.reshape(-1, 2).astype(np.uint8)

        # Project 3D points to images
        # image1_pixel_points = cv2.perspectiveTransform(depth image, 4x4 perspective transform matrix)

        if use_frame_blocking_methods:
            # Get pointcloud
            global pointcloud
            if pointcloud is None:
                pointcloud = rs.pointcloud()
            self._pointcloud, points = self._create_rs_pointcloud(pointcloud, depth_frame)

            # Get pointcloud texture mapping
            self._pointcloud_texture = self._create_rs_pointcloud_texture(pointcloud, color_frame, points)

            # Align the color frame to depth frame and extract color image
            global align_to_depth
            if align_to_depth is None:
                align_to_depth = rs.align(rs.stream.depth)
            color_frame_aligned = align_to_depth.process(frame_set).get_color_frame()
            self._image_color_aligned = np.asanyarray(color_frame_aligned.get_data()).copy()

            # Align the depth frame to color frame and extract depth image
            global align_to_color
            if align_to_color is None:
                align_to_color = rs.align(rs.stream.color)
            depth_frame_aligned = align_to_color.process(frame_set).get_depth_frame()
            self._image_depth_aligned = np.asanyarray(depth_frame_aligned.get_data()).copy()

            # Colorize depth images
            global colorizer
            if colorizer is None:
                colorizer = rs.colorizer()
            depth_frame_colorized = self._rs_colorize(depth_frame)
            self._image_depth_colorized = np.asanyarray(depth_frame_colorized.get_data()).copy()
            depth_frame_aligned_colorized = self._rs_colorize(depth_frame_aligned)
            self._image_depth_aligned_colorized = np.asanyarray(depth_frame_aligned_colorized.get_data()).copy()

您可以像这样从数据流中传递 frame_set 来使用它:

# First import the library
import pyrealsense2 as rs

try:
    # Create a context object. This object owns the handles to all connected realsense devices
    pipeline = rs.pipeline()

    # Configure streams
    config = rs.config()
    config.enable_stream(rs.stream.depth, 1280, 720, rs.format.z16, 30)
    config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)

    # Start streaming
    pipeline.start(config)

    while True:
        # This call waits until a new coherent set of frames is available on a device
        # Calls to get_frame_data(...) and get_frame_timestamp(...) on a device will return stable values until wait_for_frames(...) is called
        frames = pipeline.wait_for_frames()
        image_packet = IntelD435ImagePacket(frames)
    exit(0)
except Exception as e:
    print(e)
    pass
© www.soinside.com 2019 - 2024. All rights reserved.