我正在尝试将 Intel Realsense D435i 相机的深度和彩色图像保存在 300 张图像的列表中。然后我将使用多处理将这 300 张图像保存到我的磁盘上。但是每次我尝试,程序都会成功地在列表中附加 15 张图像,然后我得到这个错误:
Frame didn't arrived within 5000
我确保我在 python 3.6 上安装了 64 位版本,并且当我不尝试将图像保存在列表中时,相机的流式传输非常好。真实感查看器也很好用。我也尝试过不同的分辨率和帧率,但它似乎也不起作用。有趣的是,如果我只保存彩色图像,我不会得到相同的错误,而是会在列表中一遍又一遍地得到相同的彩色图像。
if __name__ == '__main__':
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)
profile = pipeline.start(config)
depth_sensor = profile.get_device().first_depth_sensor()
depth_sensor.set_option(
rs.option.visual_preset, 3
) # Set high accuracy for depth sensor
depth_scale = depth_sensor.get_depth_scale()
align_to = rs.stream.color
align = rs.align(align_to)
# Init variables
im_count = 0
image_chunk = []
image_chunk2 = []
# sentinel = True
try:
while True:
# Wait for a coherent pair of frames: depth and color
frames = pipeline.wait_for_frames()
aligned_frames = align.process(frames)
aligned_depth_frame = aligned_frames.get_depth_frame()
color_frame = aligned_frames.get_color_frame()
if not aligned_depth_frame or not color_frame:
print("problem here")
raise RuntimeError("Could not acquire depth or color frames.")
depth_image = np.asanyarray(aligned_depth_frame.get_data())
color_image = np.asanyarray(color_frame.get_data())
image_chunk.append(color_image)
image_chunk2.append(depth_image)
except Exception as e:
print(e)
finally:
# Stop streaming
pipeline.stop()
我只是需要它来连续保存300张图像,仅此而已,所以我很困惑是什么导致了这个问题。
握住相框会锁定内存,最终会达到极限,从而无法获取更多图像。即使您正在创建图像,数据仍然来自框架。您需要在创建图像后克隆图像以释放到框架内存的链接。
depth_image = np.asanyarray(aligned_depth_frame.get_data())
color_image = np.asanyarray(color_frame.get_data())
depth_image = depth_image.copy()
color_image = color_image.copy()
image_chunk.append(color_image)
image_chunk2.append(depth_image)
在此处阅读有关帧和内存管理的更多信息: https://dev.intelrealsense.com/docs/frame-management
我创建了一个包装类来从框架集中提取各种元素,这些元素以后无法重新创建。它有点沉重,但展示了一些可能对其他人有帮助的常见操作:
# import the necessary packages
import logging
import cv2 as cv2
import numpy as np
import pyrealsense2 as rs
# create local logger to allow adjusting verbosity at the module level
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
colorizer = None
align_to_depth = None
align_to_color = None
pointcloud = None
class IntelD435ImagePacket:
"""
Class that contains image and associated processing data.
"""
@property
def frame_id(self):
return self._frame_id
@property
def timestamp(self):
return self._timestamp
@property
def image_color(self):
return self._image_color
@property
def image_depth(self):
return self._image_depth
@property
def image_color_aligned(self):
if self._image_color_aligned is None:
self._image_color_aligned = self._align_color_to_depth(self.image_color, self.depth_intrinsics,
self.color_intrinsics,
self.color_to_depth_extrinsics)
return self._image_color_aligned
@property
def image_depth_aligned(self):
if self._image_depth_aligned is None:
self._image_depth_aligned = self._align_depth_to_color(self.image_depth, self.depth_intrinsics,
self.color_intrinsics,
self.depth_to_color_extrinsics)
return self._image_depth_aligned
@property
def image_depth_colorized(self, colormap=None, min_value=None, max_value=None, visual_preset=None):
if self._image_depth_colorized is None:
self._image_depth_colorized = self._colorize(self.image_depth, colormap, min_value, max_value, visual_preset)
return self._image_depth_colorized
@property
def image_depth_8U(self, min_value=None, max_value=None):
if min_value is None:
min_value = np.amin(self.image_depth)
if max_value is None:
max_value = np.amax(self.image_depth)
if (self._image_depth_8U_min != min_value) or (self._image_depth_8U_max != max_value):
self._image_depth_8U = None
if self._image_depth_8U is None:
self._image_depth_8U_min = min_value
self._image_depth_8U_max = max_value
self._image_depth_8U = self._convert_to_GRAY_8U(self.image_depth, min_value, max_value)
return self._image_depth_8U
@property
def depth_intrinsics(self):
return self._depth_intrinsics
@property
def color_intrinsics(self):
return self._color_intrinsics
@property
def depth_to_color_extrinsics(self):
return self._depth_to_color_extrinsics
@property
def color_to_depth_extrinsics(self):
return self._color_to_depth_extrinsics
@property
def pointcloud(self):
if self._pointcloud is None:
self._pointcloud = self._create_pointcloud(self.image_depth, self.depth_intrinsics).reshape(-1, 3)
return self._pointcloud
@property
def pointcloud_texture(self):
if self._pointcloud is None:
self._pointcloud_texture = self._create_pointcloud_texture(self.image_color, self.color_intrinsics,
self.color_to_depth_extrinsics).reshape(-1, 3)
return self._pointcloud_texture
@staticmethod
def _align_color_to_depth(image_color, depth_intrinsics, color_intrinsics, color_to_depth_extrinsics):
convert_3x3_to_4x4 = np.eye(3, 4)
convert_4x4_to_3x3 = np.eye(4, 3)
H = depth_intrinsics @ convert_3x3_to_4x4 @ color_to_depth_extrinsics @ convert_4x4_to_3x3 @ np.linalg.inv(
color_intrinsics)
H = H / H[2][2]
return cv2.warpPerspective(image_color, H, (image_color.shape[1], image_color.shape[0]))
@staticmethod
def _align_depth_to_color(image_depth, depth_intrinsics, color_intrinsics, depth_to_color_extrinsics):
convert_3x3_to_4x4 = np.eye(3, 4)
convert_4x4_to_3x3 = np.eye(4, 3)
H = color_intrinsics @ convert_3x3_to_4x4 @ depth_to_color_extrinsics @ convert_4x4_to_3x3 @ np.linalg.inv(
depth_intrinsics)
H = H / H[2][2]
return cv2.warpPerspective(image_depth, H, (image_depth.shape[1], image_depth.shape[0]))
def _convert_to_GRAY_8U(self, image, min_value=None, max_value=None, dynamic_range=None):
if dynamic_range is None:
dynamic_range = False
# Perform grayscale conversion if needed
image_gray = None
if len(image.shape) == 3:
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
elif len(image.shape) == 2:
image_gray = image
else:
raise ValueError('image was an unknown format. Expected len(image.shape) = 2 or 3')
# check if further processing is needed
if dynamic_range is None and image_gray.dtype == np.uint8:
return image_gray
# Determine range of normalization
if min_value is None or max_value is None:
if dynamic_range:
# assume full range based on min/max picel values
if min_value is None:
min_value = np.amin(self.image_depth)
if max_value is None:
max_value = np.amax(self.image_depth)
else:
# assume full range based on data type
if np.issubdtype(image_gray.dtype, np.integer) or np.issubdtype(image_gray.dtype, np.signedinteger):
# int range is full range of value type
dtype_info = np.iinfo(image_gray.dtype)
if min_value is None:
min_value = dtype_info.min
if max_value is None:
max_value = dtype_info.max
else:
# float range is 0.0-1.0
if min_value is None:
min_value = 0.0
if max_value is None:
max_value = 1.0
# return cv2.normalize(image_gray, None, min_value, max_value, cv2.NORM_MINMAX, cv2.CV_8U)
range_scale_factor = 255.0 / (max_value - min_value)
return np.round((image_gray - min_value) * range_scale_factor).astype(np.uint8)
def _colorize(self, image, colormap=None, min_value=None, max_value=None, dynamic_range=None):
if colormap is None:
colormap = cv2.COLORMAP_JET
if dynamic_range is None:
dynamic_range = True
scaled = self._convert_to_GRAY_8U(image, min_value, max_value, dynamic_range)
return cv2.applyColorMap(scaled, colormap)
@staticmethod
def _rs_colorize(depth_frame, colormap=None, min_value=None, max_value=None, visual_preset=None):
global colorizer
if colormap is None:
colormap = 0
if visual_preset is None:
if min_value and max_value:
visual_preset = 1
elif min_value and max_value is None:
visual_preset = 2
elif min_value is None and max_value:
visual_preset = 3
else:
visual_preset = 0
# Apply options to colorizer
if min_value:
colorizer.set_option(rs.option.min_distance, min_value)
if max_value:
colorizer.set_option(rs.option.max_distance, max_value)
# colorizer.set_option(rs.option.histogram_equalization_enabled, 0)
colorizer.set_option(rs.option.visual_preset, visual_preset) # 0=Dynamic, 1=Fixed, 2=Near, 3=Far
colorizer.set_option(rs.option.color_scheme,
colormap) # 0=Jet, 1=Classic, 2=WhiteToBlack, 3=BlackToWhite, 4=Bio, 5=Cold, 6=Warm, 7=Quantized, 8=Pattern
return colorizer.colorize(depth_frame)
@staticmethod
def _convert_rs_intrinsics_to_opencv_matrix(rs_intrinsics):
fx = rs_intrinsics.fx
fy = rs_intrinsics.fy
cx = rs_intrinsics.ppx
cy = rs_intrinsics.ppy
s = 0 # skew
return np.array([[fx, s, cx],
[0.0, fy, cy],
[0.0, 0.0, 1.0]]).copy()
@staticmethod
def _convert_rs_extrinsics_to_opencv_matrix(rs_extrinsics):
# https://www.brainvoyager.com/bv/doc/UsersGuide/CoordsAndTransforms/SpatialTransformationMatrices.html
extrinsics_rotation = np.asanyarray(rs_extrinsics.rotation).reshape(3, 3).copy()
extrinsics_translation = np.asanyarray(rs_extrinsics.translation).reshape(1, 3).copy()
extrinsics_projection = np.concatenate((extrinsics_rotation, extrinsics_translation.T), axis=1)
extrinsics_projection = np.concatenate((extrinsics_projection, np.array([[0, 0, 0, 1]])), axis=0)
return extrinsics_projection # , extrinsics_rotation, extrinsics_translation
@staticmethod
def _create_rs_pointcloud(pointcloud, depth_frame):
points = pointcloud.calculate(depth_frame)
vtx = np.asanyarray(points.get_vertices())
return vtx.view(np.float32).reshape(vtx.shape + (-1,)).copy(), points
@staticmethod
def _create_rs_pointcloud_texture(pointcloud, color_frame, points):
pointcloud.map_to(color_frame)
tex = np.asanyarray(points.get_texture_coordinates())
return tex.view(np.float32).reshape(tex.shape + (-1,)).copy()
@staticmethod
def _create_pointcloud(image_depth, depth_intrinsics):
arr_depth = image_depth * 0.001
cx = depth_intrinsics[0, 2]
cy = depth_intrinsics[1, 2]
fx = depth_intrinsics[0, 0]
fy = depth_intrinsics[1, 1]
arr = np.indices(arr_depth.shape).transpose(1, 2, 0).astype(arr_depth.dtype)
arr = arr[..., ::-1]
arr[:, :, 0] = (arr[:, :, 0] - cx) / fx * arr_depth
arr[:, :, 1] = (arr[:, :, 1] - cy) / fy * arr_depth
return np.dstack((arr, arr_depth))
def _create_pointcloud_texture(self, image_color, color_intrinsics, color_to_depth_extrinsics):
raise NotImplementedError()
def __init__(self, frame_set, frame_id=None, timestamp=None, use_frame_blocking_methods=True, *args, **kwargs):
# Frame must be cloned and released to allow the next acquisition to occur
# Frame is not serializable, so the main goal is to capture the color/depth images and their intrinsics/extrinsics for downstream processing
# It's unfortunate that the D435 doesn't provide a non-blocking way yto do this, as their built-in functions are efficient but limit performance to 15FPS
# https://dev.intelrealsense.com/docs/projection-texture-mapping-and-occlusion-with-intel-realsense-depth-cameras
self._use_frame_blocking_methods = use_frame_blocking_methods
# Extract color image
color_frame = frame_set.get_color_frame()
self._image_color = np.asanyarray(color_frame.get_data()).copy()
# Extract depth image
depth_frame = frame_set.get_depth_frame()
self._image_depth = np.asanyarray(depth_frame.get_data()).copy()
self._pointcloud = None
self._pointcloud_texture = None
self._image_color_aligned = None
self._image_depth_aligned = None
self._image_depth_colorized = None
self._image_depth_aligned_colorized = None
self._image_depth_8U = None
self._image_depth_8U_min = None
self._image_depth_8U_max = None
if frame_id:
self._frame_id = frame_id
else:
self._frame_id = frame_set.frame_number
if timestamp:
self._timestamp = timestamp
else:
self._timestamp = frame_set.timestamp
self.__dict__.update(kwargs)
# Intrinsics map from camera space to world coordinate space
# Extrinsics map within world space
# ie, to get pixels from dept to color, intrinsic from depth to depth-in-world, extrinsics from depth-in-world to color-in-world, intrinsic from color-in-world to color
# Get depth intrinsics
depth_profile = frame_set.get_depth_frame().get_profile()
depth_video_stream_profile = depth_profile.as_video_stream_profile()
rs_depth_intrinsics = depth_video_stream_profile.get_intrinsics()
self._depth_intrinsics = self._convert_rs_intrinsics_to_opencv_matrix(rs_depth_intrinsics)
# Get color intrinsics
color_profile = frame_set.get_color_frame().get_profile()
color_video_stream_profile = color_profile.as_video_stream_profile()
rs_color_intrinsics = color_video_stream_profile.get_intrinsics()
self._color_intrinsics = self._convert_rs_intrinsics_to_opencv_matrix(rs_color_intrinsics)
# Get depth_to_color extrinsics
rs_depth_to_color_extrinsics = depth_video_stream_profile.get_extrinsics_to(color_video_stream_profile)
self._depth_to_color_extrinsics = self._convert_rs_extrinsics_to_opencv_matrix(rs_depth_to_color_extrinsics)
# Get color_to_depth extrinsics
rs_color_to_depth_extrinsics = color_video_stream_profile.get_extrinsics_to(depth_video_stream_profile)
self._color_to_depth_extrinsics = self._convert_rs_extrinsics_to_opencv_matrix(rs_color_to_depth_extrinsics)
# https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/EPSRC_SSAZ/node3.html
# I=intrinsic matrix, 3x3
# E=extrinsic matrix, 3x3
# project 3D points to images
# cv2.Rodrigues(rotation1, rvec1); // 3x3 rot matrix to 3x1
# image_pixel_points = cv2.projectPoints(1xN 3dpoints vector, np.zeros(3), np.zeros(3), cameraMatrix, None)
# image_pixels_array = image_pixels_array.reshape(-1, 2).astype(np.uint8)
# Project 3D points to images
# image1_pixel_points = cv2.perspectiveTransform(depth image, 4x4 perspective transform matrix)
if use_frame_blocking_methods:
# Get pointcloud
global pointcloud
if pointcloud is None:
pointcloud = rs.pointcloud()
self._pointcloud, points = self._create_rs_pointcloud(pointcloud, depth_frame)
# Get pointcloud texture mapping
self._pointcloud_texture = self._create_rs_pointcloud_texture(pointcloud, color_frame, points)
# Align the color frame to depth frame and extract color image
global align_to_depth
if align_to_depth is None:
align_to_depth = rs.align(rs.stream.depth)
color_frame_aligned = align_to_depth.process(frame_set).get_color_frame()
self._image_color_aligned = np.asanyarray(color_frame_aligned.get_data()).copy()
# Align the depth frame to color frame and extract depth image
global align_to_color
if align_to_color is None:
align_to_color = rs.align(rs.stream.color)
depth_frame_aligned = align_to_color.process(frame_set).get_depth_frame()
self._image_depth_aligned = np.asanyarray(depth_frame_aligned.get_data()).copy()
# Colorize depth images
global colorizer
if colorizer is None:
colorizer = rs.colorizer()
depth_frame_colorized = self._rs_colorize(depth_frame)
self._image_depth_colorized = np.asanyarray(depth_frame_colorized.get_data()).copy()
depth_frame_aligned_colorized = self._rs_colorize(depth_frame_aligned)
self._image_depth_aligned_colorized = np.asanyarray(depth_frame_aligned_colorized.get_data()).copy()
您可以像这样从数据流中传递 frame_set 来使用它:
# First import the library
import pyrealsense2 as rs
try:
# Create a context object. This object owns the handles to all connected realsense devices
pipeline = rs.pipeline()
# Configure streams
config = rs.config()
config.enable_stream(rs.stream.depth, 1280, 720, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)
# Start streaming
pipeline.start(config)
while True:
# This call waits until a new coherent set of frames is available on a device
# Calls to get_frame_data(...) and get_frame_timestamp(...) on a device will return stable values until wait_for_frames(...) is called
frames = pipeline.wait_for_frames()
image_packet = IntelD435ImagePacket(frames)
exit(0)
except Exception as e:
print(e)
pass