问题
我从Earthdata网站下载了2012年至2024年埃及北红海的叶绿素-a的AQUA-MODIS netcdf文件(总计 = 3422)。
我需要:
我尝试过使用诸如 ncdf4、terra、raster 和 RNetCDF 等软件包,但没有成功 (请参阅下面我的努力)。我还尝试在 Stackoverflow 上寻找解决方案,并根据 ChatGPT 的建议进行了一些故障排除,但没有任何效果。我真的不明白如何找到解决方案。 非常感谢,如果有人可以提供帮助。
这里是获取数据的manifest.txt链接(2024年10月22日到期)https://oceandata.sci.gsfc.nasa.gov/cgi/getfile/requested_files_2.tar?h=ocdist410&p=/data1/d0703031e30f7f6f/requested_files将文件读入R:
library(terra)
library(ncdf4)
library(raster)
library(RNetCDF)
#Start the file path to all the netcdf files as a variable 'folder'
folder<-"~/Documents/GIS_Data/CHL-A/"
#Make a list of all the files within the folder
files <-list.files(folder, pattern='*.nc', full.names ="TRUE")
for (file in files) {
nc=open.nc(file)
print.nc(nc)
}
netcdf netcdf4 {
// global attributes:
NC_CHAR :product_name = "AQUA_MODIS.20221217.L3b.DAY.CHL.x.nc" ;
NC_CHAR :title = "MODIS Level-3 Binned Data" ;
NC_CHAR :instrument = "MODIS" ;
NC_CHAR :platform = "Aqua" ;
NC_CHAR :temporal_range = "day" ;
NC_INT :start_orbit_number = 109682 ;
NC_INT :end_orbit_number = 109698 ;
NC_CHAR :date_created = "2024289095750000" ;
NC_CHAR :processing_version = "unspecified" ;
NC_CHAR :source = "satellite observations from MODIS-Aqua" ;
NC_CHAR :history = "/sdps/sdpsoper/Science/OCSSW/DEVEL/bin/l3bin ifile=AQUA_MODIS.20221217.L3b.DAY.CHL.nc ofile=AQUA_MODIS.20221217.L3b.DAY.CHL.x.nc latnorth=37.0000 latsouth=5.1000 lonwest=26.7200 loneast=54.1400" ;
NC_CHAR :time_coverage_start = "2022-12-17T00:25:01.000Z" ;
NC_CHAR :time_coverage_end = "2022-12-18T02:59:59.000Z" ;
NC_FLOAT :northernmost_latitude = 36.8958320617676 ;
NC_FLOAT :southernmost_latitude = 5.10416650772095 ;
NC_FLOAT :easternmost_longitude = 50.6941337585449 ;
NC_FLOAT :westernmost_longitude = 26.7268047332764 ;
NC_DOUBLE :geospatial_lat_max = 36.8958320617676 ;
NC_DOUBLE :geospatial_lat_min = 5.10416650772095 ;
NC_DOUBLE :geospatial_lon_max = 50.6941337585449 ;
NC_DOUBLE :geospatial_lon_min = 26.7268047332764 ;
NC_CHAR :geospatial_lat_units = "degrees_north" ;
NC_CHAR :geospatial_lon_units = "degrees_east" ;
NC_CHAR :geospatial_lat_resolution = "4.638312 km" ;
NC_CHAR :geospatial_lon_resolution = "4.638312 km" ;
NC_CHAR :spatialResolution = "4.638312 km" ;
NC_INT :data_bins = 31421 ;
NC_FLOAT :percent_data_bins = 0.132233932614326 ;
NC_CHAR :units = "chlor_a:mg m^-3" ;
NC_CHAR :binning_scheme = "Integerized Sinusoidal Grid" ;
NC_CHAR :project = "Ocean Biology Processing Group (NASA/GSFC/OBPG)" ;
NC_CHAR :institution = "NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group" ;
NC_CHAR :standard_name_vocabulary = "CF Standard Name Table v36" ;
NC_CHAR :Conventions = "CF-1.6 ACDD-1.3" ;
NC_CHAR :naming_authority = "gov.nasa.gsfc.sci.oceandata" ;
NC_CHAR :id = "AQUA_MODIS.20221217.L3b.DAY.CHL.x.nc/L3/AQUA_MODIS.20221217.L3b.DAY.CHL.x.nc" ;
NC_CHAR :license = "https://science.nasa.gov/earth-science/earth-science-data/data-information-policy/" ;
NC_CHAR :creator_name = "NASA/GSFC/OBPG" ;
NC_CHAR :publisher_name = "NASA/GSFC/OBPG" ;
NC_CHAR :creator_email = "[email protected]" ;
NC_CHAR :publisher_email = "[email protected]" ;
NC_CHAR :creator_url = "https://oceandata.sci.gsfc.nasa.gov" ;
NC_CHAR :publisher_url = "https://oceandata.sci.gsfc.nasa.gov" ;
NC_CHAR :processing_level = "L3 Binned" ;
NC_CHAR :cdm_data_type = "point" ;
NC_CHAR :keywords_vocabulary = "NASA Global Change Master Directory (GCMD) Science Keywords" ;
NC_CHAR :keywords = "Earth Science > Oceans > Ocean Chemistry > Pigments > Chlorophyll; Earth Science > Oceans > Ocean Chemistry > Chlorophyll" ;
group: level-3_binned_data {
dimensions:
binListDim = UNLIMITED ; // (31421 currently)
binDataDim = UNLIMITED ; // (31421 currently)
binIndexDim = UNLIMITED ; // (4320 currently)
types:
compound binListType {
NC_UINT bin_num ;
NC_SHORT nobs ;
NC_SHORT nscenes ;
NC_FLOAT weights ;
NC_FLOAT time_rec ;
}; // binListType
compound binDataType {
NC_FLOAT sum ;
NC_FLOAT sum_squared ;
}; // binDataType
compound binIndexType {
NC_UINT start_num ;
NC_UINT begin ;
NC_UINT extent ;
NC_UINT max ;
}; // binIndexType
variables:
binListType BinList(binListDim) ;
binDataType chlor_a(binDataDim) ;
binIndexType BinIndex(binIndexDim) ;
} // group level-3_binned_data
group: processing_control {
// group attributes:
NC_CHAR :software_name = "L3BIN" ;
NC_CHAR :software_version = "5.14" ;
NC_CHAR :input_sources = "AQUA_MODIS.20221217.L3b.DAY.CHL.nc" ;
NC_CHAR :l2_flag_names = "ATMFAIL,LAND,HILT,HISATZEN,STRAYLIGHT,CLDICE,COCCOLITH,LOWLW,CHLWARN,CHLFAIL,NAVWARN,MAXAERITER,ATMWARN,HISOLZEN,NAVFAIL,FILTER,HIGLINT" ;
group: input_parameters {
// group attributes:
NC_CHAR :infile = "AQUA_MODIS.20221217.L3b.DAY.CHL.nc" ;
NC_CHAR :ofile = "AQUA_MODIS.20221217.L3b.DAY.CHL.x.nc" ;
NC_CHAR :pfile = "AQUA_MODIS.20221217.L3b.DAY.CHL.x.nc" ;
NC_CHAR :oformat = "netCDF4" ;
NC_CHAR :syear = "9999" ;
NC_CHAR :eyear = "9999" ;
NC_CHAR :sday = "1970001" ;
NC_CHAR :eday = "2038018" ;
NC_CHAR :sorbit = "-1" ;
NC_CHAR :eorbit = "-1" ;
NC_CHAR :out_parm = ":DEFAULT:" ;
NC_CHAR :processing_version = "unspecified" ;
NC_CHAR :reduce_fac = "1" ;
NC_CHAR :resolve = "" ;
NC_CHAR :merged = "" ;
NC_CHAR :loneast = "54.139999" ;
NC_CHAR :lonwest = "26.719999" ;
NC_CHAR :latnorth = "37.000000" ;
NC_CHAR :latsouth = "5.100000" ;
NC_CHAR :verbose = "0" ;
NC_CHAR :unit_wgt = "0" ;
NC_CHAR :median = "0" ;
NC_CHAR :deflate = "5" ;
NC_CHAR :composite_prod = "" ;
NC_CHAR :composite_scheme = "" ;
NC_CHAR :doi = "" ;
} // group input_parameters
} // group processing_control
}
尝试1:
chla1<-terra::rast(files)
Error: [rast] cannot open this file as a SpatRaster: /Documents/GIS_Data/CHL-A/AQUA_MODIS.20120101.L3b.DAY.CHL.x.nc
In addition: Warning message:
`Documents/GIS_Data/CHL-A/AQUA_MODIS.20120101.L3b.DAY.CHL.x.nc' not recognized as a supported file format. (GDAL error 4)
chla1<-terra::rast(nc)
Error in methods::as(x, "SpatRaster") :
no method or default for coercing “NetCDF” to “SpatRaster”
chl4<-raster::stack(files)
Error in ncvar_type_to_string(rv$precint) :
Error, unrecognized type code of variable supplied: -1
我的目录中的一些文件的屏幕截图
terra
和
raster
都不会读取该内容,甚至 ncdf4
也会报告错误。据我所知,唯一可以打开文件而不会出现错误的软件包是 ncdfCF
,但即使这样也无法识别每个文件中包含的数据集。不过,您可以读出原始数据,然后自行处理。library(ncdfCF)
(chl <- open_ncdf(<<your_file.nc>>))
# <Dataset> AQUA_MODIS.20030101.L3b.DAY.CHL
# Resource : /my_data_dir/AQUA_MODIS.20030101.L3b.DAY.CHL.nc
# Format : netcdf4
# Conventions: CF-1.6 ACDD-1.3
# Keep open : FALSE
# Has groups : TRUE
(vars <- lf7$root$unused())
# $`level-3_binned_data.BinList`
# <netCDF variable> [0] BinList
# Group : /level-3_binned_data
# Data type : binListType
# Dimension ids: 0
#
# $`level-3_binned_data.chlor_a`
# <netCDF variable> [1] chlor_a
# Group : /level-3_binned_data
# Data type : binDataType
# Dimension ids: 1
#
# $`level-3_binned_data.BinIndex`
# <netCDF variable> [2] BinIndex
# Group : /level-3_binned_data
# Data type : binIndexType
# Dimension ids: 2
原始数据位于
level-3_binned_data.chlor_a
中,但您将需要其他两个变量来对网格单元进行地理定位。为此,您应该查找
文档中的
L3b
数据。