我有一个来自 100 名患者的单元阵列,每个单元阵列有 4 个信号:X{1}=4x10000、X{2}=4x10000 等等,直到 X{100}。相应地,我有基本事实 Y{1}=1x10000 等等,直到 Y{100}。现在我想使用 Matlab 中的 nlmefitsa 函数拟合非线性模型,但我无法这样做。有人可以帮我吗?下面是我尝试过的代码:
clc
clear
% Assuming X is a cell array where each cell contains the signals for a patient
% Each cell contains a matrix of signals for a patient, assuming 100 patients
% Assuming you have cell arrays X and Y with signals and ground truth for each patient
num_patients = 100;
num_samples_per_patient = 10000;
num_signals = 4;
X = cell(num_patients, 1);
Y = cell(num_patients, 1);
for i = 1:num_patients
% Generate random signals for each patient
signals = randn(num_signals, num_samples_per_patient);
% Define ground truth based on some relationship with signals
% Example: Y = sum of absolute values of signals for demonstration
ground_truth = sum(abs(signals), 1);
% Store signals and ground truth for each patient
X{i} = signals;
Y{i} = ground_truth;
end
% Combine signals and ground truth across patients
X_all = cell2mat(X);
Y_all = cell2mat(Y);
% Create a grouping variable for patients
group = repelem(1:num_patients, size(X{1}, 2)); % Grouping variable based on the number of samples in each patient
% Define the nonlinear model function
modelFun = @(b, t, X) b(1) * sin(X(:, 1)) + b(2) * exp(X(:, 2)) + ... % Define the custom nonlinear model here
b(3) * log(1 + abs(X(:, 3))) + b(4) * X(:, 4).^2;
% Initial values for the parameters (beta)
initialBeta = zeros(4, 1); % Modify the size based on the number of parameters in your model
% Create V matrix with independence within each patient's measurements
num_samples_per_patient = size(X{1}, 2); % Assuming all patients have the same number of samples
V = eye(num_samples_per_patient); % Assuming independence within each patient
V = repmat(V, num_patients, 1);
% Fit a nonlinear mixed-effects model
mdl = nlmefitsa(X_all, Y_all, group, modelFun, initialBeta, 'V', V, 'OptimFun', 'fminunc');
% Display model summary
disp(mdl);
% Get the coefficients of the model
coefficients = mdl.beta;
% Display the estimated coefficients
disp('Estimated Coefficients:');
disp(coefficients);
您的代码使用的是矩阵 Y;如果您访问 mathworks nlmefitsa,您会发现该函数适用于 Y 向量,而不是矩阵。这意味着您应该有一个 Y 列,其中包含所有组(例如患者)的值,然后组变量将指示每一行是哪个患者。此外,您的变量 X(X_all)应该具有与 Y 一样多的行和 4 列,每个信号一个,如果这些是您不同的预测变量。
例如,样本 10000 的 100 名患者应创建一个由一列和 1000000 行 (100*10000) 组成的 Y_all,以及一个由 4 列(每个信号一个)和 1000000 行组成的 X_all,加上您的分组变量,其中应包含每行的患者数量,如果您按顺序堆叠它们,则应该是前 10000 名患者 1 组,从 10001 到 20000 名患者 2 组,依此类推。我认为这应该可以解决模型未运行的问题。