编辑:我找不到我想要的解决方案,所以我把它作为一个简单的写入并读入.txt文件,因为两个应用程序都在同一个物理服务器上。我不是因为我认为人们可能需要一个真正的解决方案。谢谢。
首先,我很抱歉,因为我不确定这是如何调用的,因此很难谷歌搜索它。我的问题的概要是这样的:
我正在使用ageitgey的facial_recognition python库识别视频中的人脸。 Refer to this code。所以,你看到它使用opencv来捕获while True:
和ret, frame = video_capture.read()
中的每个帧。
对于每次迭代,我将填充一个变量(让我们将它命名为RETURN_CODE
)为0如果没有面部在框架内,如果面部未被识别则为1,如果面部被识别则为2。
我需要的是,对于每次迭代,我都会在不破坏循环的情况下返回此代码,以便其他应用程序继续检查此状态并根据其值执行其他操作。
我还在弄清楚如何解决这个问题,但这不是这个问题的一部分。
目前我正在打印输出,我读到我可能会使用另一个带有stdout的脚本来获取它,但是淹没控制台似乎是错误的。如果app1尝试写入而app2打开它,则写入文件可能会崩溃。
这是我的示例代码,来自上面链接的修改版本:注意:因为它没有崩溃,它必须在与该脚本相同的目录中添加2个图像,“obama.jpg”和“biden.jpg”来自此repo:https://github.com/ageitgey/face_recognition/tree/master/examples
import face_recognition
from imutils.video import VideoStream
import imutils
import cv2
import numpy as np
import time
# our variable
RETURN_CODE = 0
# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
# Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0]
# Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding
]
known_face_names = [
"Barack Obama",
"Joe Biden"
]
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
# start capturing frame by frame
## changed for imutils as is much better and opencv crashes a lot
video_capture = VideoStream(src=0).start()
TEST_START = time.time()
while True:
# Grab a single frame of video
frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = imutils.resize(frame, width=450)
# THis will resize the frame on screen
r = frame.shape[1] / float(small_frame.shape[1])
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
if name == 'Unkown':
RETURN_CODE = 1
else:
RETURN_CODE = 2
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top = int(top * r)
right = int(right * r)
bottom = int(bottom * r)
left = int(left * r)
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
#Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Currently it's printing the code, later add into a flask
print(RETURN_CODE)
#yield RETURN_CODE
if time.time() - TEST_START >= 10.0:
break
# Release handle to the webcam
video_capture.stream.release()
video_capture.stop()
cv2.destroyAllWindows()
如果我找到了你,你正在寻找进程间通信。返回代码就是程序退出时返回的内容。
写一个像你说的文件是一种方法,但有(很多)其他人。
例如,看看Python管道和队列:https://docs.python.org/3.4/library/multiprocessing.html?highlight=process#pipes-and-queues
另一种更通用的方法是运行像Redis这样的队列服务:https://python-rq.org/