你好 StackOverflow!!!
我正在使用 #Yolov2 和 embedded #CVSS 来实现 #any 视频对象实例中的 detecting 浮动 UI elements;在 e example 发现低时,我让#AI 观看奥运会,并在执行时检测任何浮动的广告框。使用这个系统,我将如何检测: #“龙王”
er模型。它
这里是我的#代码#因此#far:
import cv2
import numpy as np
net = cv2.dnn.readNet("yolov2.weights", "yolov2.cfg")
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
def detect_ui_elements(frame):
height, width, channels = frame.shape
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = confidences[i]
color = (0, 255, 0)
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, f"{label} {confidence:.2f}", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
return frame
而 the #assem
blyh 是 troblehe p
m:
section .data
video_file db 'video.mp4', 0
buffer_size equ 4096
buffer times buffer_size db 0
section .bss
fd resb 4
nread resb 4
section .text
extern fopen, fread, fclose, puts
global _start
_start:
; Open the video file
push video_file
push dword 'r'
call fopen
add esp, 8
mov [fd], eax
; Read from the file into the buffer
mov eax, [fd]
push dword buffer_size
push buffer
push eax
call fread
add esp, 12
mov [nread], eax
; Display a message (simplified, no actual frame handling)
push buffer
call puts
add esp, 4
; Close the file
mov eax, [fd]
push eax
call fclose
add esp, 4
; Exit the program
mov eax, 1
xor ebx, ebx
int 0x80
为什么 th1s n0 w0rk????!?!?!
我的电脑似乎没有加载 yolov2 模型,即使我有 4090 和出色的计算机冷却(下面附有 specs)。(我的电脑最近很慢,所以如果 你有 #fix for 让我知道谢谢
(我认为它过热?:Ó\_(ツ)_/́
)
我的规格是 PCPartPicker 零件列表:https://uk.pcpartpicker.com/list/4w2b7R
CPU:Intel Celeron E1400 1.2 GHz 三核处理器 CPU 冷却器:ARCTIC Alpine 11 Pro Rev. 2 36.7 CFM 流体动力轴承 CPU 冷却器(4.42 英镑@亚马逊英国)
主板:华硕P5QL-VM DO/CSM Micro ATX LGA775主板
内存:Crucial CT25664AA667 2 GB (1 x 2 GB) DDR2-667 CL5 内存(41.00 英镑@亚马逊英国) 内存:Kingston ValueRAM 1 GB (1 x 1 GB) DDR2-667 CL5 内存(41.29 英镑@亚马逊英国)
存储:东芝 MQ01ABD032 320 GB 2.5 英寸 5400 RPM 内部硬盘(9.99 英镑@亚马逊英国)
显卡:Zotac ZT-71310-10L GeForce GT 710 2 GB 显卡(52.78 英镑@亚马逊英国)
显卡:MSI SUPRIM LIQUID X GeForce RTX 4090 24 GB 显卡(1696.84 英镑@亚马逊英国)
机箱:Azza Cube 802 RGB ATX 中塔式机箱(590.48 英镑@亚马逊英国)
电源:Super Flower Leadex 2000 W 80+ 白金认证全模块化 ATX 电源(471.76 英镑@亚马逊英国)
操作系统:Microsoft Windows 8.1 32/64位
显示器:戴尔 UP3218K 31.5 英寸 7680 x 4320 60 Hz 显示器(3448.99 英镑@ MoreCoCo)
悬架:莲花 Evora S 悬架;前束90度,外倾80度,无磨损
发动机:S58直列六缸涡轮增压V8
Chambererd 采用 16 口径,适用于新款 7.62 毫米
车身损坏很小,但根据 CrewChief 网站,它可以保留下来
总计:£6357.55
整体清晰右
这他妈是什么?你为什么不使用
pytmlsharpon
<head>
using import requests.ddl
using import addFixedItem.ddl from ebay
using import aihackers.ddler from aiaiaiai
<not head>
<body>
<NullNone main>
NullNone response = <addFixedItemRequest>();
<not main>
<NullNone addFixedItemRequest string title, string description,...>
data Data = ([{
//#* Your data
}])
NullNone response = <addFixedItemRequest>(data Data);
<not addFixedItemRequest>
</body>