我获得了下面的函数file_encrypt_decrypt
,该函数用于使用AES256 CBC from here进行文件的加密和解密。如果我同时从同一程序进行加密和解密,(最后给出主要功能)加密和解密工作正常。尽管同时调用了相同的函数并再次启动了ctx。
如果我评论加密部分,并传递上面创建的cryptod_file,则解密失败,并显示错误:错误:EVP_CipherFinal_ex失败。 OpenSSL错误:错误:06065064:lib(6):func(101):原因(100)[[有意义]] OpenSSL错误:错误:06065064:数字信封例程:EVP_DecryptFinal_ex:不良解密
[有人在谈论某些填充长度问题。但我无法正确解决。另外,如果在同一程序中执行加密但单独进行加密,则同一功能将如何正常运行?
一些指导将不胜感激。
PS:我没有尝试使用通用功能,而是尝试使用EVP_DecryptInit_ex()
,EVP_DecryptUpdate()
,EVP_DecryptFinal_ex()
进行单独的加密和解密功能,但对于加密却没有效果,类似功能。
完整代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/aes.h>
#include <openssl/rand.h>
#define ERR_EVP_CIPHER_INIT -1
#define ERR_EVP_CIPHER_UPDATE -2
#define ERR_EVP_CIPHER_FINAL -3
#define ERR_EVP_CTX_NEW -4
#define AES_256_KEY_SIZE 32
#define AES_BLOCK_SIZE 16
#define BUFSIZE 1024
typedef struct _cipher_params_t{
unsigned char *key;
unsigned char *iv;
unsigned int encrypt;
const EVP_CIPHER *cipher_type;
}cipher_params_t;
void cleanup(cipher_params_t *params, FILE *ifp, FILE *ofp, int rc){
free(params);
fclose(ifp);
fclose(ofp);
exit(rc);
}
void file_encrypt_decrypt(cipher_params_t *params, FILE *ifp, FILE *ofp){
// Allow enough space in output buffer for additional block
int cipher_block_size = EVP_CIPHER_block_size(params->cipher_type);
unsigned char in_buf[BUFSIZE], out_buf[BUFSIZE + cipher_block_size];
int num_bytes_read, out_len;
EVP_CIPHER_CTX *ctx;
ctx = EVP_CIPHER_CTX_new();
if(ctx == NULL){
fprintf(stderr, "ERROR: EVP_CIPHER_CTX_new failed. OpenSSL error: %s\n", ERR_error_string(ERR_get_error(), NULL));
cleanup(params, ifp, ofp, ERR_EVP_CTX_NEW);
}
// Don't set key or IV right away; we want to check lengths
if(!EVP_CipherInit_ex(ctx, params->cipher_type, NULL, NULL, NULL, params->encrypt)){
fprintf(stderr, "ERROR: EVP_CipherInit_ex failed. OpenSSL error: %s\n", ERR_error_string(ERR_get_error(), NULL));
cleanup(params, ifp, ofp, ERR_EVP_CIPHER_INIT);
}
OPENSSL_assert(EVP_CIPHER_CTX_key_length(ctx) == AES_256_KEY_SIZE);
OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) == AES_BLOCK_SIZE);
// Now we can set key and IV
if(!EVP_CipherInit_ex(ctx, NULL, NULL, params->key, params->iv, params->encrypt)){
fprintf(stderr, "ERROR: EVP_CipherInit_ex failed. OpenSSL error: %s\n", ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_cleanup(ctx);
cleanup(params, ifp, ofp, ERR_EVP_CIPHER_INIT);
}
while(1){
// Read in data in blocks until EOF. Update the ciphering with each read.
num_bytes_read = fread(in_buf, sizeof(unsigned char), BUFSIZE, ifp);
if (ferror(ifp)){
fprintf(stderr, "ERROR: fread error: %s\n", strerror(errno));
EVP_CIPHER_CTX_cleanup(ctx);
cleanup(params, ifp, ofp, errno);
}
if(!EVP_CipherUpdate(ctx, out_buf, &out_len, in_buf, num_bytes_read)){
fprintf(stderr, "ERROR: EVP_CipherUpdate failed. OpenSSL error: %s\n", ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_cleanup(ctx);
cleanup(params, ifp, ofp, ERR_EVP_CIPHER_UPDATE);
}
fwrite(out_buf, sizeof(unsigned char), out_len, ofp);
if (ferror(ofp)) {
fprintf(stderr, "ERROR: fwrite error: %s\n", strerror(errno));
EVP_CIPHER_CTX_cleanup(ctx);
cleanup(params, ifp, ofp, errno);
}
if (num_bytes_read < BUFSIZE) {
// Reached End of file
break;
}
}
// Now cipher the final block and write it out to file
if(!EVP_CipherFinal_ex(ctx, out_buf, &out_len)){
fprintf(stderr, "ERROR: EVP_CipherFinal_ex failed. OpenSSL error: %s\n", ERR_error_string(ERR_get_error(), NULL));
EVP_CIPHER_CTX_cleanup(ctx);
cleanup(params, ifp, ofp, ERR_EVP_CIPHER_FINAL);
}
fwrite(out_buf, sizeof(unsigned char), out_len, ofp);
if (ferror(ofp)) {
fprintf(stderr, "ERROR: fwrite error: %s\n", strerror(errno));
EVP_CIPHER_CTX_cleanup(ctx);
cleanup(params, ifp, ofp, errno);
}
EVP_CIPHER_CTX_cleanup(ctx);
}
int main(int argc, char *argv[]) {
FILE *f_input, *f_enc, *f_dec;
// Make sure user provides the input file
if (argc != 2) {
printf("Usage: %s /path/to/file\n", argv[0]);
return -1;
}
cipher_params_t *params = (cipher_params_t *)malloc(sizeof(cipher_params_t));
if (!params) {
// Unable to allocate memory on heap
fprintf(stderr, "ERROR: malloc error: %s\n", strerror(errno));
return errno;
}
// Key to use for encrpytion and decryption
unsigned char key[AES_256_KEY_SIZE];
// Initialization Vector
unsigned char iv[AES_BLOCK_SIZE];
// Generate cryptographically strong pseudo-random bytes for key and IV
if (!RAND_bytes(key, sizeof(key)) || !RAND_bytes(iv, sizeof(iv))) {
// OpenSSL reports a failure, act accordingly
fprintf(stderr, "ERROR: RAND_bytes error: %s\n", strerror(errno));
return errno;
}
params->key = key;
params->iv = iv;
// Indicate that we want to encrypt
params->encrypt = 1;
// Set the cipher type you want for encryption-decryption
params->cipher_type = EVP_aes_256_cbc();
// Open the input file for reading in binary ("rb" mode)
f_input = fopen(argv[1], "rb");
if (!f_input) {
// Unable to open file for reading
fprintf(stderr, "ERROR: fopen error: %s\n", strerror(errno));
return errno;
}
// Open and truncate file to zero length or create ciphertext file for writing
f_enc = fopen("encrypted_file", "wb");
if (!f_enc) {
// Unable to open file for writing
fprintf(stderr, "ERROR: fopen error: %s\n", strerror(errno));
return errno;
}
// Encrypt the given file
file_encrypt_decrypt(params, f_input, f_enc);
// Encryption done, close the file descriptors
fclose(f_input);
fclose(f_enc);
// Decrypt the file
// Indicate that we want to decrypt
params->encrypt = 0;
// Open the encrypted file for reading in binary ("rb" mode)
f_input = fopen("encrypted_file", "rb");
if (!f_input) {
// Unable to open file for reading
fprintf(stderr, "ERROR: fopen error: %s\n", strerror(errno));
return errno;
}
// Open and truncate file to zero length or create decrypted file for writing
f_dec = fopen("decrypted_file", "wb");
if (!f_dec) {
// Unable to open file for writing
fprintf(stderr, "ERROR: fopen error: %s\n", strerror(errno));
return errno;
}
// Decrypt the given file
file_encrypt_decrypt(params, f_input, f_dec);
// Close the open file descriptors
fclose(f_input);
fclose(f_dec);
// Free the memory allocated to our structure
free(params);
return 0;
}
该代码将生成一个新的密钥,并运行each生成一个新的IV。因此,如果仅注释掉加密部分,则将生成两个different密钥/ IV对,并用于加密和解密,这将导致观察到错误消息。如果出于测试目的使用固定密钥/ IV对,而不是每次使用新生成的对,则代码将按预期工作。
通常,用于加密的密钥/ IV对也必须用于解密。关于IV,实际上,通常在加密期间生成