我有一组 N 种化合物,分别为 1, 2,..., N。对于每种化合物,我都有其每种成分的分数,“A”,“B”等。化合物还可以包含其他化合物,在这种情况下给出相应的分数。例如,对于 N = 5,样本集是
mixes = {
1: {
"A": 0.32,
"B": 0.12,
"C": 0.15,
2: 0.41
},
2: {
"C": 0.23,
"D": 0.12,
"E": 0.51,
4: 0.14
},
3: {
"A": 0.24,
"E": 0.76
},
4: {
"B": 0.13,
"F": 0.01,
"H": 0.86
},
5: {
"G": 0.1,
2: 0.4,
3: 0.5
}
}
我想要一种算法,可以给出每种化合物中每种成分的净分数,即
mixes = {
1: {
"A": 0.32,
"B": 0.12 + 0.41 * 0.14 * 0.13,
"C": 0.15 + 0.41 * 0.23,
"D": 0.41 * 0.12,
"E": 0.41 * 0.51,
"F": 0.41 * 0.14 * 0.01,
"H": 0.41 * 0.14 * 0.86
},
2: {
"B": 0.14 * 0.13,
"C": 0.23,
"D": 0.12,
"E": 0.51,
"F": 0.14 * 0.01,
"H": 0.14 * 0.86
},
3: {
"A": 0.24,
"E": 0.76
},
4: {
"B": 0.13,
"F": 0.01,
"H": 0.86
},
5: {
"A": 0.5 * 0.24,
"G": 0.1,
"B": 0.4 * 0.14 * 0.13,
"C": 0.4 * 0.23,
"D": 0.4 * 0.12,
"E": 0.4 * 0.51 + 0.5 * 0.76,
"F": 0.4 * 0.14 * 0.01,
"H": 0.4 * 0.14 * 0.86
}
}
我目前的方法涉及递归,但我想知道是否有一个聪明的方法来做到这一点。也许使用树状数据结构可能会有所帮助?
编辑: 为简单起见,假设数据集中没有循环关系。
这是一个递归解决方案:
from collections import defaultdict
from pprint import pprint
mixes = {
1: {
'A': 0.32,
'B': 0.12,
'C': 0.15,
2: 0.41
},
2: {
'C': 0.23,
'D': 0.12,
'E': 0.51,
4: 0.14
},
3: {
'A': 0.24,
'E': 0.76
},
4: {
'B': 0.13,
'F': 0.01,
'H': 0.86
},
5: {
'G': 0.1,
2: 0.4,
3: 0.5
}
}
# A dictionary of dictionaries with default 0.0 float values.
result = defaultdict(lambda: defaultdict(float))
def resolve(compound):
'''Return the components of a compound, recursively adjusted for ratios.
'''
for component, ratio in mixes[compound].items():
# If the component is another compound, recursively report its ratios.
if isinstance(component, int):
for subcomponent, subratio in resolve(component):
yield subcomponent, subratio * ratio
else:
yield component, ratio
for compound in mixes:
for component, ratios in resolve(compound):
result[compound][component] += ratios
pprint(result, width=20)
输出:
defaultdict(<function <lambda> at 0x000002632319B9C0>,
{1: defaultdict(<class 'float'>,
{'A': 0.32,
'B': 0.127462,
'C': 0.2443,
'D': 0.049199999999999994,
'E': 0.20909999999999998,
'F': 0.0005740000000000001,
'H': 0.049364}),
2: defaultdict(<class 'float'>,
{'B': 0.0182,
'C': 0.23,
'D': 0.12,
'E': 0.51,
'F': 0.0014000000000000002,
'H': 0.12040000000000001}),
3: defaultdict(<class 'float'>,
{'A': 0.24,
'E': 0.76}),
4: defaultdict(<class 'float'>,
{'B': 0.13,
'F': 0.01,
'H': 0.86}),
5: defaultdict(<class 'float'>,
{'A': 0.12,
'B': 0.007280000000000001,
'C': 0.09200000000000001,
'D': 0.048,
'E': 0.5840000000000001,
'F': 0.0005600000000000001,
'G': 0.1,
'H': 0.04816000000000001})})