from torcheval.metrics.aggregation.auc import AUC
from torcheval.metrics import BinaryAccuracy
from sklearn.metrics import roc_auc_score, accuracy_score
p_pred = torch.tensor([0.2, 0.3, 0.4, 0.6, 0.7, 0.8]) # model est likelihood of target class
y_true = torch.tensor([0.0, 0.0, 1.0, 0.0, 1.0, 1.0]) # ground truth, 1 = target class
# TorchEval Metrics
auc_metric = AUC()
accuracy_metric = BinaryAccuracy(threshold=0.5)
auc_metric.reset()
accuracy_metric.reset()
auc_metric.update(p_pred,y_true)
accuracy_metric.update(input=p_pred,target=y_true)
print(f"TorchEval Accuracy = {accuracy_metric.compute().item():.3}")
print(f"Sklearn Accuracy = {accuracy_score(y_true=y_true,y_pred=p_pred.round()):.3}")
print(f"TorchEval AUC = {auc_metric.compute().item():.3}")
print(f"Sklearn AUC = {roc_auc_score(y_true=y_true,y_score=p_pred):.3}")
torcheval auc的意外价值:
TorchEval Accuracy = 0.667
Sklearn Accuracy = 0.667
TorchEval AUC = 0.3
Sklearn AUC = 0.889
如何正确调用Torcheval AUC以获得〜0.9?
的预期值
我应该使用
metrics.BinaryAUROC
而不是。我认为
metrics.AUC
是在您已经拥有ROC的坐标时。
为AUC.update()
这样的(输入,target)应该是赠品,而不是我想要的。
BinaryAccuracy
返回预期的结果。