我试图在两个列表上证明一个简单的归纳,并且由于某种原因,Coq写入归纳假设是错误的。这是我的证明:
Lemma eqb_list_true_iff_left_to_right :
forall A (eqb : A -> A -> bool),
(forall a1 a2, eqb a1 a2 = true <-> a1 = a2) ->
forall l1 l2, eqb_list eqb l1 l2 = true -> l1 = l2.
Proof.
intros A eqb H1.
induction l1 as [|a1 l1' IHl1'] eqn:E1.
- induction l2 as [|a2 l2' IHl2'] eqn:E2.
+ reflexivity.
+ intros H2. simpl in H2. discriminate H2.
- (* where did l1 = l1' come from ??? *)
以下是到达最后(注释)行时的假设和目标:
1 subgoal
A : Type
eqb : A -> A -> bool
H1 : forall a1 a2 : A, eqb a1 a2 = true <-> a1 = a2
l1 : list A
a1 : A
l1' : list A
E1 : l1 = a1 :: l1'
IHl1' : l1 = l1' ->
forall l2 : list A, eqb_list eqb l1' l2 = true -> l1' = l2
______________________________________(1/1)
forall l2 : list A, eqb_list eqb (a1 :: l1') l2 = true -> a1 :: l1' = l2
显然,IHl1'涉及一个false -> _
所以它没用。 l1 = l1'
来自哪里???我在这里失踪了什么?谢谢!!
简短的回答:在eqn:E1
的电话中删除induction l1
。
该指令要求induction
策略在声明中增加一个相等的归纳。但是如果你加上这样的相等,那么它就会出现在声明中,通过归纳证明,这会弄乱感应证据。