我想动态地在多个列上加入两个spark-scala数据帧。 我将避免硬编码列名比较,如以下语句所示;
val joinRes = df1.join(df2, df1("col1") == df2("col1") and df1("col2") == df2("col2"))
pyspark版本中已经存在此查询的解决方案-在以下链接中提供了PySpark DataFrame-动态连接多个列
我想使用spark-scala编码相同的代码
在scala中,您可以像在python中一样执行此操作,但是您需要使用map和reduce函数:
val sparkSession = SparkSession.builder().getOrCreate()
import sparkSession.implicits._
val df1 = List("a,b", "b,c", "c,d").toDF("col1","col2")
val df2 = List("1,2", "2,c", "3,4").toDF("col1","col2")
val columnsdf1 = df1.columns
val columnsdf2 = df2.columns
val joinExprs = columnsdf1
.zip(columnsdf2)
.map{case (c1, c2) => df1(c1) === df2(c2)}
.reduce(_ && _)
val dfJoinRes = df1.join(df2,joinExprs)