我有相交于一点两线。我知道这两条线的端点。如何计算在Python交点?
# Given these endpoints
#line 1
A = [X, Y]
B = [X, Y]
#line 2
C = [X, Y]
D = [X, Y]
# Compute this:
point_of_intersection = [X, Y]
不像其他的建议,这是短,不使用外部库像numpy
。 (不,使用其他库是坏的......这是很好并不需要,特别是对于这样一个简单的问题。)
def line_intersection(line1, line2):
xdiff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])
ydiff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1])
def det(a, b):
return a[0] * b[1] - a[1] * b[0]
div = det(xdiff, ydiff)
if div == 0:
raise Exception('lines do not intersect')
d = (det(*line1), det(*line2))
x = det(d, xdiff) / div
y = det(d, ydiff) / div
return x, y
print line_intersection((A, B), (C, D))
而仅供参考,我会用元组而不是列出了您的观点。例如。
A = (X, Y)
编辑:最初有一个错字。这是fixed 2014年9月拜@zidik。
这仅仅是下面的公式,其中该线(A1,A2)和(B1,B2)的Python的音译与交点为p。 (如果分母为零,则线有没有独特交叉点)。
不能站在一旁,
因此,我们有线性系统:
A1 + B1 * X * Y = C1 A2 * B2 * X + Y = C2
让我们做它用克莱姆法则,这样的解决方案可以在决定中找到:
X = DX / d Y = Y / d
其中d是该系统的主要决定因素:
A1 B1 A2 B2
和Dx和Dy可以从矩阵中找到:
C1 B1 C2 B2
和
A1 C1 A2 C2
(注意,为C柱从而替代了COEF。x和y的列)
所以,现在的蟒蛇,为了清楚对我们来说,不要把事情搞得一团糟,让我们做数学和Python之间的映射。我们将使用数组L
用于存储我们coefs A,B,C线方程和漂亮x
的intestead,y
我们将有[0]
,[1]
,但无论如何。因此,我上面写的是什么将有以下形式进一步的代码:
为d
1 [0] 1 [1] 否[0] [1]
对于DX
1 [A] 1 [1] 不并[a]否[1]
对于镝
1 [0] 1 [A] 否[0] [A]
现在去编码:
line
- 通过提供两个点产生coefs A,B,线方程的C,
intersection
- 查找交点(如果有的话)由coefs提供的两个线。
from __future__ import division
def line(p1, p2):
A = (p1[1] - p2[1])
B = (p2[0] - p1[0])
C = (p1[0]*p2[1] - p2[0]*p1[1])
return A, B, -C
def intersection(L1, L2):
D = L1[0] * L2[1] - L1[1] * L2[0]
Dx = L1[2] * L2[1] - L1[1] * L2[2]
Dy = L1[0] * L2[2] - L1[2] * L2[0]
if D != 0:
x = Dx / D
y = Dy / D
return x,y
else:
return False
用法示例:
L1 = line([0,1], [2,3])
L2 = line([2,3], [0,4])
R = intersection(L1, L2)
if R:
print "Intersection detected:", R
else:
print "No single intersection point detected"
使用公式:https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
def findIntersection(x1,y1,x2,y2,x3,y3,x4,y4):
px= ( (x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4) ) / ( (x1-x2)*(y3-y4)-(y1-y2)*(x3-x4) )
py= ( (x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4) ) / ( (x1-x2)*(y3-y4)-(y1-y2)*(x3-x4) )
return [px, py]
我没有在网上找到一个直观的解释,所以现在我工作了,这是我的解决方案。这是无限的线(我所需要的),不段。
有些方面你可能还记得:
的线被定义为y = mx + b中或y =斜率* X + Y截距
斜率=上升超过运行= DY / DX =高度/距离
Y轴截距是其中线穿过Y轴,其中X = 0
鉴于这些定义,这里有一些功能:
def slope(P1, P2):
# dy/dx
# (y2 - y1) / (x2 - x1)
return(P2[1] - P1[1]) / (P2[0] - P1[0])
def y_intercept(P1, slope):
# y = mx + b
# b = y - mx
# b = P1[1] - slope * P1[0]
return P1[1] - slope * P1[0]
def line_intersect(m1, b1, m2, b2):
if m1 == m2:
print ("These lines are parallel!!!")
return None
# y = mx + b
# Set both lines equal to find the intersection point in the x direction
# m1 * x + b1 = m2 * x + b2
# m1 * x - m2 * x = b2 - b1
# x * (m1 - m2) = b2 - b1
# x = (b2 - b1) / (m1 - m2)
x = (b2 - b1) / (m1 - m2)
# Now solve for y -- use either line, because they are equal here
# y = mx + b
y = m1 * x + b1
return x,y
这里有两(无限)线之间一个简单的测试:
A1 = [1,1]
A2 = [3,3]
B1 = [1,3]
B2 = [3,1]
slope_A = slope(A1, A2)
slope_B = slope(B1, B2)
y_int_A = y_intercept(A1, slope_A)
y_int_B = y_intercept(B1, slope_B)
print(line_intersect(slope_A, y_int_A, slope_B, y_int_B))
输出:
(2.0, 2.0)
下面是使用Shapely库的解决方案。身材匀称通常用于GIS工作,但是是建立在对计算几何有用。我改变了你的投入从名单元组。
# Given these endpoints
#line 1
A = (X, Y)
B = (X, Y)
#line 2
C = (X, Y)
D = (X, Y)
# Compute this:
point_of_intersection = (X, Y)
import shapely
from shapely.geometry import LineString, Point
line1 = LineString([A, B])
line2 = LineString([C, D])
int_pt = line1.intersection(line2)
point_of_intersection = int_pt.x, int_pt.y
print(point_of_intersection)
如果你的线是多个点,而不是,您可以使用this version.
import numpy as np
import matplotlib.pyplot as plt
"""
Sukhbinder
5 April 2017
Based on:
"""
def _rect_inter_inner(x1,x2):
n1=x1.shape[0]-1
n2=x2.shape[0]-1
X1=np.c_[x1[:-1],x1[1:]]
X2=np.c_[x2[:-1],x2[1:]]
S1=np.tile(X1.min(axis=1),(n2,1)).T
S2=np.tile(X2.max(axis=1),(n1,1))
S3=np.tile(X1.max(axis=1),(n2,1)).T
S4=np.tile(X2.min(axis=1),(n1,1))
return S1,S2,S3,S4
def _rectangle_intersection_(x1,y1,x2,y2):
S1,S2,S3,S4=_rect_inter_inner(x1,x2)
S5,S6,S7,S8=_rect_inter_inner(y1,y2)
C1=np.less_equal(S1,S2)
C2=np.greater_equal(S3,S4)
C3=np.less_equal(S5,S6)
C4=np.greater_equal(S7,S8)
ii,jj=np.nonzero(C1 & C2 & C3 & C4)
return ii,jj
def intersection(x1,y1,x2,y2):
"""
INTERSECTIONS Intersections of curves.
Computes the (x,y) locations where two curves intersect. The curves
can be broken with NaNs or have vertical segments.
usage:
x,y=intersection(x1,y1,x2,y2)
Example:
a, b = 1, 2
phi = np.linspace(3, 10, 100)
x1 = a*phi - b*np.sin(phi)
y1 = a - b*np.cos(phi)
x2=phi
y2=np.sin(phi)+2
x,y=intersection(x1,y1,x2,y2)
plt.plot(x1,y1,c='r')
plt.plot(x2,y2,c='g')
plt.plot(x,y,'*k')
plt.show()
"""
ii,jj=_rectangle_intersection_(x1,y1,x2,y2)
n=len(ii)
dxy1=np.diff(np.c_[x1,y1],axis=0)
dxy2=np.diff(np.c_[x2,y2],axis=0)
T=np.zeros((4,n))
AA=np.zeros((4,4,n))
AA[0:2,2,:]=-1
AA[2:4,3,:]=-1
AA[0::2,0,:]=dxy1[ii,:].T
AA[1::2,1,:]=dxy2[jj,:].T
BB=np.zeros((4,n))
BB[0,:]=-x1[ii].ravel()
BB[1,:]=-x2[jj].ravel()
BB[2,:]=-y1[ii].ravel()
BB[3,:]=-y2[jj].ravel()
for i in range(n):
try:
T[:,i]=np.linalg.solve(AA[:,:,i],BB[:,i])
except:
T[:,i]=np.NaN
in_range= (T[0,:] >=0) & (T[1,:] >=0) & (T[0,:] <=1) & (T[1,:] <=1)
xy0=T[2:,in_range]
xy0=xy0.T
return xy0[:,0],xy0[:,1]
if __name__ == '__main__':
# a piece of a prolate cycloid, and am going to find
a, b = 1, 2
phi = np.linspace(3, 10, 100)
x1 = a*phi - b*np.sin(phi)
y1 = a - b*np.cos(phi)
x2=phi
y2=np.sin(phi)+2
x,y=intersection(x1,y1,x2,y2)
plt.plot(x1,y1,c='r')
plt.plot(x2,y2,c='g')
plt.plot(x,y,'*k')
plt.show()