ifort版本:(IFORT)2021.8.0 20221119 操作系统:WSL Ubuntu 20.04LTS
我有一个 (1000x1000x1000) 3D 数组可以在进程之间分配。在第一种方法中,我将数组展平,然后将数组分布在进程之间,大约需要 7.86 秒
在第二种方法中,我使用 MPI 派生的数据类型来分散 3D 数组,我注意到它需要大约 165.34 秒。但收集相同数据大约需要 14.24 秒。
造成这种不一致的原因是什么?我预计 Scatterv 会花费与 Gatherv 类似的时间
这是代码
program ex_scatterv
use mpi
use iso_fortran_env, only : real64
implicit none
!allocate arrays
real(real64), allocatable,dimension(:,:,:) :: array, array_local
real(real64), allocatable,dimension(:) :: array_flat, array_local_flat
integer :: rank, num_procs, i, j, k
integer :: nx, ny, nz, str_idx, end_idx, local_size, local_size_flat
integer, dimension(:), allocatable :: sendcounts, displacements
integer :: sizes(3), sub_sizes(3), starts(3), recv_starts(3), recv_sizes(3), &
send_type, resize_send_type, recv_type, resize_recv_type
integer(kind=8) :: lb, extent, lb_resize
real(real64) :: start_time
integer :: mpierr
call mpi_init(mpierr)
call mpi_comm_size(mpi_comm_world, num_procs, mpierr)
call mpi_comm_rank(mpi_comm_world, rank, mpierr)
!size of array
nx=1000
ny=1000
nz=1000
if(rank==0) then
if(num_procs>nx) then
print*, "Number of procs should be less than or equal to first dimension of the array"
call MPI_Abort(mpi_comm_world, 1, mpierr)
endif
endif
start_time=MPI_Wtime()
!allocate in the root rank
if(rank==0) then
allocate(array(nx,ny,nz))
allocate(array_flat(nx*ny*nz))
else !for other procs allocate with zero size
allocate(array(0,0,0))
endif
!assign values to the array
if(rank==0) then
do k=1,nz
do j=1,ny
do i=1,nx
array(i,j,k) = (i-1)+(j-1)*nx+(k-1)*nx*ny
end do
end do
end do
!print*, "Before scattering..."
!print*, array
!flatten the 3D array
forall(k=1:nz, j=1:ny, i=1:nx) array_flat(k+(j-1)*nz+(i-1)*ny*nz)=array(i,j,k)
endif
!distribute the 3d array among different procs
call distribute_points(nx, rank, num_procs, str_idx, end_idx)
local_size = end_idx - str_idx + 1
local_size_flat = local_size*ny*nz
!allocate local(for each rank) arrays
allocate(array_local_flat(local_size_flat))
allocate(array_local(local_size, ny, nz))
!allocate sendcoutns and displacements arrays for braodcasting
allocate(sendcounts(num_procs), displacements(num_procs))
!gather displacements and sendcounts for all ranks
call MPI_Allgather(str_idx, 1, MPI_INTEGER, displacements, 1, MPI_INTEGER, &
MPI_COMM_WORLD, mpierr)
call MPI_Allgather(local_size, 1, MPI_INTEGER, sendcounts, 1, &
MPI_INTEGER, MPI_COMM_WORLD, mpierr)
!total sendcounts and displacements
sendcounts = sendcounts*ny*nz
displacements = displacements - 1 !Array index starts with 0 in MPI (C)
displacements = displacements*ny*nz
!scatter the flattened array among procs
call MPI_Scatterv(array_flat, sendcounts, displacements, MPI_DOUBLE_PRECISION, &
array_local_flat, local_size*ny*nz, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, &
mpierr)
!form 3D array from flattened local array
forall(k=1:nz, j=1:ny, i=1:local_size) array_local(i,j,k) = &
array_local_flat(k+(j-1)*nz+(i-1)*ny*nz)
!print*, "Scattered array: ", rank
!print*, array_local
if(rank==0) then
print*, "Time taken by flatten and scatter: ", MPI_Wtime()-start_time
endif
call MPI_Barrier(mpi_comm_world, mpierr)
!deallocate(array_flat, array_local_flat)
start_time=MPI_Wtime()
!Scatterning using subarray type
sizes = [nx, ny, nz]
recv_sizes=[local_size, ny, nz]
sub_sizes = [1, ny, nz]
starts = [0, 0, 0]
recv_starts = [0, 0, 0]
!to get extent of MPI_DOUBLE_PRECISION
call MPI_Type_get_extent(MPI_DOUBLE_PRECISION, lb, extent, mpierr)
!create a mpi subarray data type for sending data
call MPI_Type_create_subarray(3, sizes, sub_sizes, starts, &
MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, send_type, mpierr)
lb_resize=0
!resize the send subarray for starting at correct location for next send
call MPI_Type_create_resized(send_type, lb_resize, extent, &
resize_send_type, mpierr)
call MPI_Type_commit(resize_send_type, mpierr)
!create a mpi subarray data type for receiving data
call MPI_Type_create_subarray(3, recv_sizes, sub_sizes, recv_starts, &
MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, recv_type, mpierr)
!resize the receive subarray for starting at correct location for next receive
call MPI_Type_create_resized(recv_type, lb_resize, extent, &
resize_recv_type, mpierr)
call MPI_Type_commit(resize_recv_type, mpierr)
!sendcounts and displacement for sending and receiving subarrays
sendcounts=sendcounts/(ny*nz)
displacements = displacements/(ny*nz)
if(rank==0) then
print*, "Time taken for creating MPI type subarrays: ", MPI_Wtime()-start_time
endif
call MPI_Barrier(mpi_comm_world, mpierr)
start_time=MPI_Wtime()
!scatter the subarrays
call MPI_Scatterv(array, sendcounts, displacements, resize_send_type, &
array_local, sendcounts, resize_recv_type, 0, MPI_COMM_WORLD, mpierr)
if(rank==0) then
print*, "Time taken for scattering using MPI type subarrays: ", MPI_Wtime()-start_time
endif
call MPI_Barrier(mpi_comm_world, mpierr)
!print the scattered array
!print*, "Scattered array with subarray: ", rank
!print*, array_local
!do some computations on the scattered local arrays
array_local = array_local+1
call MPI_Barrier(mpi_comm_world, mpierr)
start_time=MPI_Wtime()
!Gather the local arrays to global (array) using the same subarrays
call MPI_Gatherv(array_local, local_size, resize_recv_type, array, &
sendcounts, displacements, resize_send_type, 0, MPI_COMM_WORLD, mpierr)
if(rank==0) then
print*, "Time taken by MPI_Type_create_subarray Gathering: ", MPI_Wtime()-start_time
endif
!if(rank==0) then
! print*, "Gathered array: ------------------"
! print*, array
!endif
call MPI_Finalize(mpierr)
contains
subroutine distribute_points(npts, rank, size, start_idx, end_idx)
implicit none
integer, intent(in) :: npts, size, rank
integer, intent(out) :: start_idx, end_idx
integer :: pts_per_proc
pts_per_proc = npts/size
if(rank < mod(npts, size)) then
pts_per_proc=pts_per_proc + 1
end if
if(rank < mod(npts, size)) then
start_idx = rank * pts_per_proc + 1
end_idx = (rank + 1) * pts_per_proc
else
start_idx = mod(npts, size) + rank*pts_per_proc + 1
end_idx = mod(npts, size) + (rank + 1) * pts_per_proc
end if
end subroutine distribute_points
end program ex_scatterv
MPI 数据类型比用户级打包和发送操作慢的原因有很多。
我已经在https://arxiv.org/abs/1809.10778
中对此进行了探索在您的具体情况下,正如一些评论者指出的那样,您的数据不规则也可能使您的
Scatterv
效率低下。