我想证明以下代码以 5 和 3 个钞票/硬币返回给定金额(金钱):
function sum(ns: seq<nat>): nat
{
if |ns| == 0 then
0
else
ns[0] + sum(ns[1..])
}
method Change(amount: nat)
returns (result: seq<nat>)
requires amount >= 8
ensures forall i :: 0 <= i <= |result| - 1 ==> result[i] == 3 || result[i] == 5
ensures sum(result) == amount
{
if amount == 8 {
result := [3, 5];
assert sum(result) == amount;
} else if amount == 9 {
result := [3, 3, 3 ];
assert sum(result) == amount;
} else if amount == 10 {
result := [5, 5];
assert sum(result) == amount;
} else {
var tmp := Change(amount - 3);
assert sum(tmp) == amount - 3; # this works
var x := [3];
assert sum(x) == 3; # this works
result := tmp + x;
assert sum(x) + sum(tmp) == sum(result); # this fails :(
}
}
基本情况似乎工作得很好(例如,Dafny 可以断言
sum([3, 5]) == amount
),但它在递归情况下遇到了困难。
我添加了额外的断言来明确失败,最后我要断言的是
ensures
子句,assert sum(result) == amount
对于递归情况是正确的。
你需要一个引理来向 Dafny 解释有关函数的数学事实,这些函数对我们来说似乎是显而易见的,但对 Dafny 来说却并不明显。
lemma sumConcat(xs: seq<nat>, ys: seq<nat>)
ensures sum(xs) + sum(ys) == sum(xs + ys)
{
if xs == [] {
assert xs + ys == ys;
assert sum(xs) == 0;
assert sum(xs) + sum(ys) == sum(xs + ys);
}else {
assert xs == [xs[0]] + xs[1..];
assert xs + ys == [xs[0]] + xs[1..]+ys;
sumConcat(xs[1..] , ys);
assert sum([xs[0]]) == xs[0];
assert (xs+ys)[1..] == xs[1..]+ys;
assert sum(xs) + sum(ys) == sum(xs + ys);
}
}
method Change(amount: nat)
returns (result: seq<nat>)
requires amount >= 8
ensures forall i :: 0 <= i <= |result| - 1 ==> result[i] == 3 || result[i] == 5
ensures sum(result) == amount
{
if amount == 8 {
result := [3, 5];
assert sum(result) == amount;
} else if amount == 9 {
result := [3, 3, 3 ];
assert sum(result) == amount;
} else if amount == 10 {
result := [5, 5];
assert sum(result) == amount;
} else {
var tmp := Change(amount - 3);
assert sum(tmp) == amount - 3;
var x := [3];
assert sum(x) == 3;
result := tmp + x;
sumConcat(tmp, x);
assert sum(x) + sum(tmp) == sum(result);
}
}