我可以让 matplotlib 滑块更加离散吗?

问题描述 投票:0回答:3

我正在使用 matplotlib 滑块,类似于 这个演示。滑块目前使用 2 位小数,并且“感觉”相当连续(尽管它们在某种程度上必须是离散的)。我可以决定它们的离散程度吗?整数步长? 0.1 大小的步长? 0.5?我的谷歌失败了。

python matplotlib slider
3个回答
34
投票

如果您只需要整数值,只需在创建滑块时传入适当的

valfmt
(例如
valfmt='%0.0f'

但是,如果您想要非整数反转,则需要每次手动设置文本值。即使您这样做,滑块仍然会顺利前进,并且不会“感觉”像离散间隔。

这是一个例子:

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.widgets import Slider

class ChangingPlot(object):
    def __init__(self):
        self.inc = 0.5

        self.fig, self.ax = plt.subplots()
        self.sliderax = self.fig.add_axes([0.2, 0.02, 0.6, 0.03],
                                          axisbg='yellow')

        self.slider = Slider(self.sliderax, 'Value', 0, 10, valinit=self.inc)
        self.slider.on_changed(self.update)
        self.slider.drawon = False

        x = np.arange(0, 10.5, self.inc)
        self.ax.plot(x, x, 'ro')
        self.dot, = self.ax.plot(self.inc, self.inc, 'bo', markersize=18)

    def update(self, value):
        value = int(value / self.inc) * self.inc
        self.dot.set_data([[value],[value]])
        self.slider.valtext.set_text('{}'.format(value))
        self.fig.canvas.draw()

    def show(self):
        plt.show()

p = ChangingPlot()
p.show()

如果您想让滑块“感觉”完全像离散值,您可以子类化

matplotlib.widgets.Slider
。 按键效果由
Slider.set_val

控制

在这种情况下,你会做这样的事情:

class DiscreteSlider(Slider):
    """A matplotlib slider widget with discrete steps."""
    def __init__(self, *args, **kwargs):
        """Identical to Slider.__init__, except for the "increment" kwarg.
        "increment" specifies the step size that the slider will be discritized
        to."""
        self.inc = kwargs.pop('increment', 0.5)
        Slider.__init__(self, *args, **kwargs)

    def set_val(self, val):
        discrete_val = int(val / self.inc) * self.inc
        # We can't just call Slider.set_val(self, discrete_val), because this 
        # will prevent the slider from updating properly (it will get stuck at
        # the first step and not "slide"). Instead, we'll keep track of the
        # the continuous value as self.val and pass in the discrete value to
        # everything else.
        xy = self.poly.xy
        xy[2] = discrete_val, 1
        xy[3] = discrete_val, 0
        self.poly.xy = xy
        self.valtext.set_text(self.valfmt % discrete_val)
        if self.drawon: 
            self.ax.figure.canvas.draw()
        self.val = val
        if not self.eventson: 
            return
        for cid, func in self.observers.iteritems():
            func(discrete_val)

作为使用它的完整示例:

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.widgets import Slider

class ChangingPlot(object):
    def __init__(self):
        self.inc = 0.5

        self.fig, self.ax = plt.subplots()
        self.sliderax = self.fig.add_axes([0.2, 0.02, 0.6, 0.03],
                                          facecolor='yellow')

        self.slider = DiscreteSlider(self.sliderax, 'Value', 0, 10, 
                                     increment=self.inc, valinit=self.inc)
        self.slider.on_changed(self.update)

        x = np.arange(0, 10.5, self.inc)
        self.ax.plot(x, x, 'ro')
        self.dot, = self.ax.plot(self.inc, self.inc, 'bo', markersize=18)

    def update(self, value):
        self.dot.set_data([[value],[value]])
        self.fig.canvas.draw()

    def show(self):
        plt.show()

class DiscreteSlider(Slider):
    """A matplotlib slider widget with discrete steps."""
    def __init__(self, *args, **kwargs):
        """Identical to Slider.__init__, except for the "increment" kwarg.
        "increment" specifies the step size that the slider will be discritized
        to."""
        self.inc = kwargs.pop('increment', 0.5)
        Slider.__init__(self, *args, **kwargs)
        self.val = 1

    def set_val(self, val):
        discrete_val = int(val / self.inc) * self.inc
        # We can't just call Slider.set_val(self, discrete_val), because this 
        # will prevent the slider from updating properly (it will get stuck at
        # the first step and not "slide"). Instead, we'll keep track of the
        # the continuous value as self.val and pass in the discrete value to
        # everything else.
        xy = self.poly.xy
        xy[2] = discrete_val, 1
        xy[3] = discrete_val, 0
        self.poly.xy = xy
        self.valtext.set_text(self.valfmt % discrete_val)
        if self.drawon: 
            self.ax.figure.canvas.draw()
        self.val = val
        if not self.eventson: 
            return
        for cid, func in self.observers.items():
            func(discrete_val)


p = ChangingPlot()
p.show()

enter image description here


2
投票

如果您不想子类化 Slider,我从 @Joe Kington 的答案中挑选了几行来完成回调函数中的离散化:

sldr = Slider(ax,'name',0.,5.,valinit=0.,valfmt="%i")
sldr.on_changed(partial(set_slider,sldr))

然后:

def set_slider(s,val):
    s.val = round(val)
    s.poly.xy[2] = s.val,1
    s.poly.xy[3] = s.val,0
    s.valtext.set_text(s.valfmt % s.val)

0
投票

自 Matplotlib 2.2 起,从 2018 年 3 月起,

Slider
有一个
valstep
参数来执行此操作:

valstep
float
或类似数组,默认:
None

如果是浮动的,滑块将捕捉到valstep的倍数。如果是数组,滑块将捕捉到数组中的值。

from matplotlib.widgets import Slider

slider = Slider(..., valstep=1)  # or 0.1, 0.5, ...

官方教程将滑块捕捉到离散值

中解释了更高级的用法,使用数组而不是标量
© www.soinside.com 2019 - 2024. All rights reserved.