['b','b','b','a','a','c','c']
numpy.unique给予
['a','b','c']
我如何保存原始订单
['b','a','c']
很高兴的答案。奖励问题。为什么这些方法都不适用于此数据集?
以下是这个问题numpy sort wierd candy
unique()
import numpy as np
a = np.array(['b','a','b','b','d','a','a','c','c'])
_, idx = np.unique(a, return_index=True)
print(a[np.sort(idx)])
输出:
['b' 'a' 'd' 'c']
Pandas.unique()
对于大阵列O(n)的速度要快得多:
import pandas as pd
a = np.random.randint(0, 1000, 10000)
%timeit np.unique(a)
%timeit pd.unique(a)
1000 loops, best of 3: 644 us per loop
10000 loops, best of 3: 144 us per loop
使用
return_index
np.unique
这些索引。
argsort
>>> a, idx = np.unique(['b','b','b','a','a','c','c'], return_index=True)
>>> a[np.argsort(idx)]
array(['b', 'a', 'c'],
dtype='|S1')
如果您试图删除已经分类的重复,则可以使用itertools.groupby
>>> from itertools import groupby
>>> a = ['b','b','b','a','a','c','c']
>>> [x[0] for x in groupby(a)]
['b', 'a', 'c']
>>> b = ['b','b','b','a','a','c','c','a','a']
>>> [x[0] for x in groupby(b)]
['b', 'a', 'c', 'a']
#List we need to remove duplicates from while preserving order
x = ['key1', 'key3', 'key3', 'key2']
thisdict = dict.fromkeys(x) #dictionary keys are unique and order is preserved
print(list(thisdict)) #convert back to list
output: ['key1', 'key3', 'key2']
,这是一个解决方案:uniq
使用订单(比列表理解更快)
def uniq(seq):
"""
Like Unix tool uniq. Removes repeated entries.
:param seq: numpy.array
:return: seq
"""
diffs = np.ones_like(seq)
diffs[1:] = seq[1:] - seq[:-1]
idx = diffs.nonzero()
return seq[idx]