我在 yolo nas 检测代码上绑定了运行预测,但它抛出了错误。在 Colab 之前,它工作正常,没有给出错误,但第二天它给出了一个错误,我不明白我运行此代码的任何内容,与每个 yolo nas github 文档相同。不知道什么
img_url='/content/Retail-Store-1/valid/images/-10_jpg.rf.d5119996f5715cf1105b1e5bf01c0ced.jpg'
# best_model.predict(img_url).show()
# images_predictions.show(box_thickness=2, show_confidence=True)
images_predictions = best_model.predict(img_url)
for image_prediction in images_predictions:
class_names = image_prediction.class_names
labels = image_prediction.prediction.labels
confidence = image_prediction.prediction.confidence
bboxes = image_prediction.prediction.bboxes_xyxy
for i, (label, conf, bbox) in enumerate(zip(labels, confidence, bboxes)):
print("prediction: ", i)
print("label_id: ", label)
print("label_name: ", class_names[int(label)])
print("confidence: ", conf)
print("bbox: ", bbox)
print("--" * 10)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-24-7b64588141eb> in <cell line: 1>()
----> 1 for image_prediction in images_predictions:
2 class_names = image_prediction.class_names
3 labels = image_prediction.prediction.labels
4 confidence = image_prediction.prediction.confidence
5 bboxes = image_prediction.prediction.bboxes_xyxy
TypeError: 'ImageDetectionPrediction' object is not iterable
之前工作时您可能使用的是 3.5 版本,因为从 3.6 版本开始,如果输入是单个图像,预测结果不再是可迭代对象。
另请参阅 GitHub 问题那里。