如何使用 ggsignif 将显着性线添加到 ggplot2 中的分组箱线图中?

问题描述 投票:0回答:1

我的数据是这样的

dput(rbind.data.frame(head(combined_iresidues), tail(combined_iresidues)))
structure(list(atomnum = c(889, 889, 889, 889, 238, 238, 121, 
121, 914, 914, 914, 914), atominfo = c("C115-SG", "C115-SG", 
"C115-SG", "C115-SG", "C30-SG", "C30-SG", "G16-C", "G16-C", "D119-CB", 
"D119-CB", "D119-CB", "D119-CB"), dx = c("d1", "d2", "d3", "d4", 
"d1", "d2", "d3", "d4", "d1", "d2", "d3", "d4"), value = c(0.0736, 
0.0912, 0.1027, 0.1046, 0.0734, 0.11, 0.0263, 0.0255, 0.0048, 
0.0185, 0.0231, 0.0184), facet_title = c("F[o]^2 - F[o]^1", "F[o]^3 - F[o]^1", 
"F[o]^4 - F[o]^1", "F[o]^5 - F[o]^1", "F[o]^2 - F[o]^1", "F[o]^3 - F[o]^1", 
"F[o]^4 - F[o]^1", "F[o]^5 - F[o]^1", "F[o]^2 - F[o]^1", "F[o]^3 - F[o]^1", 
"F[o]^4 - F[o]^1", "F[o]^5 - F[o]^1"), xstl = c("XS1-4.5", "XS1-4.5", 
"XS1-4.5", "XS1-4.5", "XS1-4.5", "XS1-4.5", "XS1-9.5", "XS1-9.5", 
"XS1-9.5", "XS1-9.5", "XS1-9.5", "XS1-9.5"), pH = c("4.5", "4.5", 
"4.5", "4.5", "4.5", "4.5", "9.5", "9.5", "9.5", "9.5", "9.5", 
"9.5"), dataset = c("b3x11", "b3x11", "b3x11", "b3x11", "b3x11", 
"b3x11", "b3x14", "b3x14", "b3x14", "b3x14", "b3x14", "b3x14"
), mean = c(0.0204145631067961, 0.0239122683142101, 0.0292734333627538, 
0.0319611650485437, 0.0204145631067961, 0.0239122683142101, 0.0273805996472663, 
0.0315843915343915, 0.0181168430335097, 0.0231408289241623, 0.0273805996472663, 
0.0315843915343915), sd = c(0.00984739879326438, 0.0112094908468026, 
0.0117753129471673, 0.0134786092559798, 0.00984739879326438, 
0.0112094908468026, 0.0110648522827486, 0.013277545556386, 0.00666584795415998, 
0.00959848563099842, 0.0110648522827486, 0.013277545556386), 
    residue_type = c("CYS", "CYS", "CYS", "CYS", "CYS", "CYS", 
    "GLY", "GLY", "ASP|GLU", "ASP|GLU", "ASP|GLU", "ASP|GLU")), row.names = c(NA, 
-12L), groups = structure(list(dx = c("d1", "d2", "d3", "d4"), 
    .rows = structure(list(c(1L, 5L), c(2L, 6L), 3L, 4L), ptype = integer(0), class = c("vctrs_list_of", 
    "vctrs_vctr", "list"))), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -4L), .drop = TRUE), class = c("grouped_df", 
"tbl_df", "tbl", "data.frame"))

我生成绘图的代码是这样的

# Boxplot for interesting residues 
ggplot(data = combined_iresidues, aes(x = factor(residue_type, levels = c("CYS", "ASP|GLU", "MET", "GLY")), y = value, fill = factor(xstl))) + geom_hline(aes(yintercept = mean + 3 * sd, colour = factor(xstl)), linetype = "dashed", linewidth = 1.0) +
  geom_boxplot(outlier.alpha=0.5) +
  scale_y_continuous(breaks = c(0, 0.05, 0.10, 0.15)) +
  facet_wrap(~facet_title, labeller = label_parsed) +
  theme_bw(base_size = 16) +
  labs(
    x = "Residue type", 
    y = "y_label",
    fill = "Crystal",  # Change legend title for color
    colour = "Crystal"
  ) 

如果我添加到上面的代码

+ geom_signif(comparisons = list(c(1,2)))
我得到两个不同的residual_types之间的线,而不是在相同的residual_types内。

从这个答案(不同x和同一组的箱线图之间的geom_signif)看来我需要得到一个新的x(x2)...

combined_iresidues %>%
  mutate(x2 = interaction(xstl, residue_type)) %>%
  ggplot(aes(x = factor(x2), y = value, fill = factor(xstl))) +
  geom_hline(aes(yintercept = mean + 3 * sd, colour = factor(xstl)), linetype = "dashed", linewidth = 1.0) +
  geom_boxplot(outlier.alpha=0.5) +
  scale_y_continuous(breaks = c(0, 0.05, 0.10, 0.15))+
  facet_wrap(~facet_title, labeller = label_parsed) +
  theme_bw(base_size = 16) +
  labs(
    x = "Residue type", 
    y = "y_label",
    fill = "Crystal",  # Change legend title for color
    colour = "Crystal"
  ) +
  geom_signif(comparisons = list(c(1, 2), c(3, 4), c(5, 6), c(7, 8)), map_signif_level = TRUE, textsize = 5, y_position = 0.13) 

这会生成显着性线,但最好有第一个图中的 x 标签。

我尝试使用

scale_x_discrete(breaks = c(1.5, 3.5, 5.5, 7.5), labels = c("CYS", "ASP|GLU", "MET", "GLY"))
更改标签,但没有成功,但我没有得到任何标签。

是否有更简单的方法来获取 ggsignif 而无需使用新的

x2
?也许 ggsignif 不是这里的最佳选择?旋转 x 轴文本有一点帮助,但这是一个丑陋的解决方案。

r ggplot2
1个回答
0
投票

由于我们可以将函数传递给

labels=
scale_x_discrete
参数,我们可以使用例如
gsub()
只保留交互变量的
residue_type
。为此,我在
sep=
中使用下划线作为
interaction()
arator。此外,我首先将
residue_type
转换为
factor
以获得所需的订单。

library(ggplot2)
library(ggsignif)
library(dplyr, warn = FALSE)

combined_iresidues |>
  ungroup() |>
  mutate(
    residue_type = factor(residue_type,
      levels = c("CYS", "ASP|GLU", "MET", "GLY")
    ),
    x2 = interaction(xstl, residue_type, sep = "_")
  ) |>
  ggplot(aes(x = x2, y = value, fill = xstl)) +
  geom_hline(aes(
    yintercept = mean + 3 * sd,
    colour = factor(xstl)
  ), linetype = "dashed", linewidth = 1.0) +
  geom_boxplot(outlier.alpha = 0.5) +
  scale_y_continuous(breaks = c(0, 0.05, 0.10, 0.15)) +
  scale_x_discrete(
    labels = \(x) gsub("^.*_", "", x)
  ) +
  facet_wrap(~facet_title, labeller = label_parsed) +
  theme_bw(base_size = 16) +
  labs(
    x = "Residue type",
    y = "y_label",
    fill = "Crystal", # Change legend title for color
    colour = "Crystal"
  ) +
  ggsignif::geom_signif(
    comparisons = list(c(1, 2), c(3, 4), c(5, 6), c(7, 8)),
    map_signif_level = TRUE, textsize = 5, y_position = 0.13
  )
#> Warning: Computation failed in `stat_signif()`.
#> Caused by error in `wilcox.test.default()`:
#> ! not enough 'y' observations
#> Warning: Computation failed in `stat_signif()`.
#> Caused by error in `wilcox.test.default()`:
#> ! not enough 'y' observations

最新问题
© www.soinside.com 2019 - 2025. All rights reserved.