glmer中的互动(统计建议)

问题描述 投票:0回答:1

我需要帮助理解并跟进使用lme4中的glmer()获得的交互。

数据来自语言处理实验,该实验研究三个分类变量(对照/ copula /性别)对二项式响应(优选或不优选)的影响。每个实验因素都有两个级别:对照(主体/对象)copula(ser / estar)性别(男性/女性)。

我运行以下模型:

model1= glmer(preferences~control*copula*gender+(1|participant), family=binomial, data=data2)

这些是我获得的结果:

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: preferences_narrow ~ control * copula * gender + (1 | participant)
   Data: data2

     AIC      BIC   logLik deviance df.resid 
  1208.6   1261.1   -595.3   1190.6     2517 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-8.6567  0.1970  0.2337  0.2883  0.5371 

Random effects:
 Groups      Name        Variance Std.Dev.
 participant (Intercept) 0.254    0.504   
Number of obs: 2526, groups:  participant, 105

Fixed effects:
                                    Estimate Std. Error z value Pr(>|z|)    
(Intercept)                           2.5034     0.2147  11.660  < 2e-16 ***
controlsubject                        0.4882     0.3172   1.539  0.12380    
copulaser                             0.4001     0.3237   1.236  0.21646    
gendermasc                           -0.4524     0.2659  -1.701  0.08888 .  
controlsubject:copulaser             -1.0355     0.4526  -2.288  0.02215 *  
controlsubject:gendermasc             0.5790     0.4430   1.307  0.19121    
copulaser:gendermasc                  1.7343     0.5819   2.980  0.00288 ** 
controlsubject:copulaser:gendermasc  -1.3121     0.7540  -1.740  0.08181 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
             (Intr) cntrls coplsr gndrms cntrlsbjct:c cntrlsbjct:g cplsr:
contrlsbjct  -0.602                                                      
copulaser    -0.588  0.401                                               
gendermasc   -0.724  0.488  0.479                                        
cntrlsbjct:c  0.415 -0.701 -0.716 -0.342                                 
cntrlsbjct:g  0.432 -0.716 -0.287 -0.599  0.502                          
cplsr:gndrm   0.332 -0.223 -0.556 -0.457  0.397        0.274             
cntrlsbjc::  -0.252  0.421  0.430  0.352 -0.600       -0.588       -0.772

controlsubject:copulasercopulaser:gendermasc有两个重要的相互作用。

我使用emmeans进行了第一次交互:

emmeans(model1, list(pairwise ~ control + copula), adjust = "tukey")

结果似乎表明,多重对比正在推动交互(当我为第二次交互做同样的事情时会发生类似情况):

NOTE: Results may be misleading due to involvement in interactions
$`emmeans of control, copula`
 control copula   emmean        SE  df asymp.LCL asymp.UCL
 object  estar  2.277256 0.1497913 Inf  1.983670  2.570841
 subject estar  3.054906 0.1912774 Inf  2.680009  3.429802
 object  ser    3.544448 0.2697754 Inf  3.015698  4.073198
 subject ser    2.630568 0.1752365 Inf  2.287110  2.974025

Results are averaged over the levels of: gender 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of control, copula`
 contrast                       estimate        SE  df z.ratio p.value
 object,estar - subject,estar -0.7776499 0.2215235 Inf  -3.510  0.0025
 object,estar - object,ser    -1.2671927 0.2910689 Inf  -4.354  0.0001
 object,estar - subject,ser   -0.3533119 0.2088155 Inf  -1.692  0.3279
 subject,estar - object,ser   -0.4895427 0.3138092 Inf  -1.560  0.4017
 subject,estar - subject,ser   0.4243380 0.2396903 Inf   1.770  0.2877
 object,ser - subject,ser      0.9138807 0.3048589 Inf   2.998  0.0145

Results are averaged over the levels of: gender 
Results are given on the log odds ratio (not the response) scale. 
P value adjustment: tukey method for comparing a family of 4 estimates 

然而,NOTE意味着什么?

NOTE: Results may be misleading due to involvement in interactions

这是跟进这些互动的好方法吗?

提前致谢! :)

lme4 interaction
1个回答
0
投票

如注释中所示,所显示的估计值是对照,联会和性别组合的预测的平均值,平均为性别。同时,该模型包括性别与其他两个因素之间的相互作用,这表明这些平均值可能没有意义。您可以通过构建三向预测图来可视化:

emmip(model1, gender ~ control * copula)

如果预测与一个案例的比较截然不同,那么它们的平均值将是无意义的。但如果它们的比较几乎相同,那么平均它们就可以了。这就是警告的内容。

我猜你确实遇到过担心与性别的互动 - 在这种情况下你应该分开进行比较:

emmeans(model1, pairwise ~ control * copula | gender)
© www.soinside.com 2019 - 2024. All rights reserved.