我已经在Tensorflow(v2.0)Keras中训练了一个模型。现在,我需要将此经过预训练的模型上传到Google Datalab中,以便对大量数据进行预测。 Datalab上可用的Tenserflow版本是1.8,但我认为是向后兼容。
我已将保存的模型(model.h5)上传到Google Cloud Storage。我试图像这样将其加载到Datalab的Jupyter Notebook中:
%%gcs read --object gs://project-xxx/data/saved_model.h5 --variable ldmodel
model = keras.models.load_model(ldmodel)
这将引发错误:
---------------------------------------------------------------------------
UnicodeDecodeError Traceback (most recent call last)
<ipython-input-18-07c40785a14b> in <module>()
----> 1 model = keras.models.load_model(ldmodel)
/usr/local/envs/py3env/lib/python3.5/site-
packages/tensorflow/python/keras/_impl/keras/engine/saving.py in load_model(filepath,
custom_objects,
compile)
233 return obj
234
--> 235 with h5py.File(filepath, mode='r') as f:
236 # instantiate model
237 model_config = f.attrs.get('model_config')
/usr/local/envs/py3env/lib/python3.5/site-packages/h5py/_hl/files.py in __init__(self, name, mode,
driver, libver, userblock_size, swmr, **kwds)
267 with phil:
268 fapl = make_fapl(driver, libver, **kwds)
--> 269 fid = make_fid(name, mode, userblock_size, fapl, swmr=swmr)
270
271 if swmr_support:
/usr/local/envs/py3env/lib/python3.5/site-packages/h5py/_hl/files.py in make_fid(name, mode,
userblock_size, fapl, fcpl, swmr)
97 if swmr and swmr_support:
98 flags |= h5f.ACC_SWMR_READ
---> 99 fid = h5f.open(name, flags, fapl=fapl)
100 elif mode == 'r+':
101 fid = h5f.open(name, h5f.ACC_RDWR, fapl=fapl)
h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
h5py/h5f.pyx in h5py.h5f.open()
h5py/defs.pyx in h5py.defs.H5Fopen()
h5py/_errors.pyx in h5py._errors.set_exception()
UnicodeDecodeError: 'utf-8' codec can't decode byte 0x89 in position 29: invalid start byte
任何帮助将不胜感激!