我想用scrapy从myntra.com提取数据。到目前为止,我的代码是
# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
class VideoSpider(CrawlSpider):
name = 'video'
allowed_domains = ['myntra.com']
user_agent = 'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
# def __init__(self, url = ""):
# # self.input = input # source file name
# self.url = url
# # self.last = last
def start_requests(self):
# yield scrapy.Request(url='https://www.amazon.in/gp/bestsellers/videogames/ref=zg_bs_nav_0', headers={
# 'User-Agent': self.user_agent
# })
yield scrapy.Request(url=self.url, headers={
'User-Agent': self.user_agent
}, callback=self.parse)
# with open("./Input/amazon.csv") as f:
# for line in f:
# category, url = line.split(',')
# category = category.strip()
# url = url.strip()
# yield scrapy.Request(url=url, headers={
# 'User-Agent': self.user_agent
# }, meta={'urlkey':category})
rules = (
Rule(LinkExtractor(restrict_xpaths="//li[@class='product-base']", process_value=lambda x :"https://www.myntra.com/" +x), callback='parse_item', follow=True, process_request='set_user_agent'), # have tried //li[@class='product-base']/a/@href and //li[@class='product-base']/a[1] as well for restricted_xpaths
Rule(LinkExtractor(restrict_xpaths="//li[@class='pagination-next']/a"), process_request='set_user_agent')
)
# def parse_start(self, response):
# print(response)
# all_links = response.xpath('//li[@class="product-base"]/a/@href').extract()
# print(all_links)
# for link in all_links:
# yield scrapy.Request(url='myntra.com'+link, callback=self.parse_item)
# return super().parse_start_url(response)
# def parse_fail(self, response):
# print(response.url)
# all_links = response.xpath('//li[@class="product-base"]/a/@href').extract()
# print(all_links)
# for link in all_links:
# yield scrapy.Request(url='myntra.com'+link, callback=self.parse_item)
def set_user_agent(self, request):
request.headers['User-Agent'] = self.user_agent
return request
# def process_values(self,value):
# print(value)
# value = "https://www.myntra.com/" + value
# print(value)
# return value
# def link_add(self, links):
# print(links)
def parse_item(self, response):
# yield {
# 'title':response.xpath("normalize-space(//span[@class='a-size-large']/text())").get(),
# 'brand':response.xpath("normalize-space(//div[@class='a-section a-spacing-none']/a/text())").get(),
# 'product-specification':response.xpath("normalize-space(//ul[@class='a-unordered-list a-vertical a-spacing-mini']/li/span/text())").get(),
# 'product-description':response.xpath("normalize-space(//div[@class='a-row feature']/div[2]/p/text())").get(),
# 'user-agent':response.request.headers['User-Agent']
# }
item = dict()
item['title'] = response.xpath("//div[@class='pdp-price-info']/h1/text()").extract()
item['price'] = response.xpath("normalize-space(//span[@class='pdp-price']/strong/text())").extract()
item['product-specification'] = response.xpath("//div[@class='index-tableContainer']/div/div/text()").extract()
item['product-specification'] = [p.replace("\t", "") for p in item['product-specification']]
yield item
# yield {
# 'title':response.xpath("normalize-space(//span[@class='a-size-large']/text())").extract(),
# 'brand':response.xpath("normalize-space(//div[@class='a-section a-spacing-none']/a/text())").extract(),
# 'product-specification':response.xpath("//ul[@class='a-unordered-list a-vertical a-spacing-mini']/li/span/text()").extract(),
# 'product-description':response.xpath("normalize-space(//div[@class='a-row feature']/div[2]/p/text())").extract(),
# }
# //div[@class="search-searchProductsContainer row-base"]//section//ul//li[@class="product-base"]//a//@href
代码中的注释显示了我所有的尝试。
启动网址 网址
链接提取器中使用的href的xpath是 /li[@class='产品库']a@href. 但是,问题是hrefref需要附加上 https:/myntra.com 前面的链接提取器的提取值,因此过程_value的lambda函数。但是,这段代码并没有运行。
輸出
2020-05-26 02:52:12 [scrapy.core.engine] INFO: Spider opened
2020-05-26 02:52:12 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)
2020-05-26 02:52:12 [scrapy.extensions.telnet] INFO: Telnet console listening on 127.0.0.1:6023
2020-05-26 02:52:12 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.myntra.com/robots.txt> (referer: None)
2020-05-26 02:52:13 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://www.myntra.com/men-footwear> (referer: None)
2020-05-26 02:52:13 [scrapy.core.engine] INFO: Closing spider (finished)
2020-05-26 02:52:13 [scrapy.statscollectors] INFO: Dumping Scrapy stats:
{'downloader/request_bytes': 1023,
'downloader/request_count': 2,
'downloader/request_method_count/GET': 2,
'downloader/response_bytes': 87336,
'downloader/response_count': 2,
'downloader/response_status_count/200': 2,
'elapsed_time_seconds': 0.76699,
'finish_reason': 'finished',
'finish_time': datetime.datetime(2020, 5, 25, 21, 22, 13, 437855),
'log_count/DEBUG': 2,
'log_count/INFO': 10,
'log_count/WARNING': 1,
'memusage/max': 51507200,
'memusage/startup': 51507200,
'response_received_count': 2,
'robotstxt/request_count': 1,
'robotstxt/response_count': 1,
'robotstxt/response_status_count/200': 1,
'scheduler/dequeued': 1,
'scheduler/dequeued/memory': 1,
'scheduler/enqueued': 1,
'scheduler/enqueued/memory': 1,
'start_time': datetime.datetime(2020, 5, 25, 21, 22, 12, 670865)}
2020-05-26 02:52:13 [scrapy.core.engine] INFO: Spider closed (finished)
任何帮助将被感激。
这个页面使用JavaScript来添加项目,但它并没有从外部文件中读取,但它的所有数据都在标签中。<script>
import requests
from bs4 import BeautifulSoup
import json
base_url = "https://www.myntra.com/men-footwear"
r = requests.get(base_url)
soup = BeautifulSoup(r.text, 'html.parser')
# get .text
scripts = soup.find_all('script')[8].text
# remove window.__myx =
script = scripts.split('=', 1)[1]
# convert to dictionary
data = json.loads(script)
for item in data['searchData']['results']['products']:
#print(item.keys())
#for key, value in item.items():
# print(key, '=', value)
print('product:', item['product'])
#print('productId:', item['productId'])
#print('brand:', item['brand'])
print('url:', 'https://www.myntra.com/' + item['landingPageUrl'])
print('---')
结果。
product: Puma Men Black Rapid Runner IDP Running Shoes
url: https://www.myntra.com/sports-shoes/puma/puma-men-black-rapid-runner-idp-running-shoes/9005767/buy
---
product: Puma Men White Smash Leather Sneakers
url: https://www.myntra.com/casual-shoes/puma/puma-men-white-smash-leather-sneakers/1966314/buy
---
product: Puma Unisex Grey Escaper Core Running Shoes
url: https://www.myntra.com/sports-shoes/puma/puma-unisex-grey-escaper-core-running-shoes/10137271/buy
---
product: Red Tape Men Brown Leather Derbys
url: https://www.myntra.com/casual-shoes/red-tape/red-tape-men-brown-leather-derbys/10300791/buy
---
EDIT: 相同的是 Scrapy
你可以把所有的代码放在一个文件中,然后运行 python script.py
无需创建项目。
它使用 meta
将产品数据从一个解析器(解析主页面)发送到另一个解析器(解析产品页面)。
import scrapy
import json
class MySpider(scrapy.Spider):
name = 'myspider'
start_urls = ['https://www.myntra.com/men-footwear']
def parse(self, response):
print('url:', response.url)
scripts = response.xpath('//script/text()')[9].get()
# remove window.__myx =
script = scripts.split('=', 1)[1]
# convert to dictionary
data = json.loads(script)
for item in data['searchData']['results']['products']:
info = {
'product': item['product'],
'productId': item['productId'],
'brand': item['brand'],
'url': 'https://www.myntra.com/' + item['landingPageUrl'],
}
#yield info
yield response.follow(item['landingPageUrl'], callback=self.parse_item, meta={'item': info})
def parse_item(self, response):
print('url:', response.url)
info = response.meta['item']
# TODO: parse product page with more information
yield info
# --- run without project and save in `output.csv` ---
from scrapy.crawler import CrawlerProcess
c = CrawlerProcess({
'USER_AGENT': 'Mozilla/5.0',
# save in file CSV, JSON or XML
'FEED_FORMAT': 'csv', # csv, json, xml
'FEED_URI': 'output.csv', #
})
c.crawl(MySpider)
c.start()