最后,这是我关于StackOF的第一个问题:
作为uni的项目,我试图从头开始为KMeans编写代码,然后使用mpi4py在随机起始中心处并行运行不同的重复。
这里是代码:
#!/usr/bin/env python
# coding: utf-8
# In[3]:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from mpi4py import MPI
# import statistics as stat
comm=MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
print('no of processors is', size)
print('this is the process #', rank)
df = pd.read_csv('data.dat',
sep=' ',
header=None,
index_col=0, engine='python' )
n_mus = [1, 2, 4, 12] # 100]#, 1000]
cost_k = []
k_vals = range(1, 5, 2)
# k_vals = range(1, 30, 6)
for orig_n_mu in n_mus:
n_mu = orig_n_mu//size
if rank in range(orig_n_mu%size):
n_mu += 1
for k in k_vals:
cost_n = []
for n in range(1, n_mu + 1):
np.random.seed(n * k + k)
kx = np.random.uniform(df[1].min(), df[1].max(), k)
np.random.seed(n * k + k + 1)
ky = np.random.uniform(df[2].min(), df[2].max(), k)
manh = pd.DataFrame()
for c in range(k):
manh[c] = abs(df[1] - kx[c]) + abs(df[2] - ky[c])
df['center'] = manh.idxmin(axis='columns')
kx = df.groupby('center').mean()[1]
ky = df.groupby('center').mean()[2]
if df.center.unique().shape[0] != k:
print('not all centers took up clusters at the number', n,
'repetition')
print('the current number of clusters is:',
df.center.unique().shape[0], 'instead of', k)
diff = 10
while diff > 1e-4:
cost = manh.min(axis=1).mean()
for c in df.center.unique():
manh[c] = abs(df[1] - kx[c]) + abs(df[2] - ky[c])
df['center'] = manh.idxmin(axis='columns')
kx = df.groupby('center').mean()[1]
ky = df.groupby('center').mean()[2]
new_cost = manh.min(axis=1).mean()
diff = cost - new_cost
cost_n.append(new_cost)
cost_k.append([k, rank, n_mu, orig_n_mu, cost_n])
print('process #', rank, 'is done here')
all_cost = comm.gather(cost_k, root = 0)
if (rank == 0):
print('check point #1')
all_cost = np.reshape(all_cost, newshape=(-1,len(cost_k[0])))
print('the shape of all cost is', all_cost.shape)
res = pd.DataFrame(all_cost, columns=['k_val', 'rank', 'n_mu', 'orig_n_mu','cost_res'])
noruns = (res.n_mu == 0)
res = res[~noruns].copy()
res.reset_index(inplace=True, drop=True)
print('check point #2')
cost_funcs = pd.DataFrame(res.cost_res.to_list())
print('check point #3')
km_df = pd.merge(res, cost_funcs, how='outer',left_index=True, right_index=True)
print('check point #4')
km_df.drop(columns='cost_res', inplace = True)
km_df['avg_final_cost'] = cost_funcs.apply(np.nanmean, axis =1)
km_df['std_final_cost'] = cost_funcs.apply(np.nanstd, axis =1)
km_df['min_final_cost'] = cost_funcs.apply(min, axis =1)
km_df['max_final_cost'] = cost_funcs.apply(max, axis =1)
km_df.to_csv('km_df_test_para.csv')
# km_df
生成的csv看起来像这样:sample csv screenshot
这里n是每个核心上的运行次数,orig_n是我应该进行分析,记录时间,检查std,平均值等的运行总数。列0,1,2,...是每次运行的结果,列名是单个内核的运行次数。
现在,我需要将所有这些运行按n_orig分组。但是不知道如何告诉熊猫将所有具有相同n_orig和k的值放在同一行中。如您所知,我对MPI也很陌生,不知道如何收集数据。 Gather和Gatherv命令不断删除错误“ 0”。
非常感谢您能提供的任何帮助:)
n_orig
和k_val
对行进行排序就足够了?km_df.sort_values(by=['n_orig', 'k_val'], inplace=True)