假设我有以下2D数组:
import numpy as np
np.random.seed(123)
a = np.random.randint(1, 6, size=(5, 3))
产生:
In [371]: a
Out[371]:
array([[3, 5, 3],
[2, 4, 3],
[4, 2, 2],
[1, 2, 2],
[1, 1, 2]])
有没有比qazxsw poi更有效(Numpy,Pandas等)计算所有数字对的频率的方法?
the following solution
产生这样的东西:
from collections import Counter
from itertools import combinations
def pair_freq(a, sort=False, sort_axis=-1):
a = np.asarray(a)
if sort:
a = np.sort(a, axis=sort_axis)
res = Counter()
for row in a:
res.update(combinations(row, 2))
return res
res = pair_freq(a)
要么:
In [38]: res
Out[38]:
Counter({(3, 5): 1,
(3, 3): 1,
(5, 3): 1,
(2, 4): 1,
(2, 3): 1,
(4, 3): 1,
(4, 2): 2,
(2, 2): 2,
(1, 2): 4,
(1, 1): 1})
PS结果数据集可能看起来不同 - 例如像多索引Pandas DataFrame或其他东西。
我试图增加In [39]: res.most_common()
Out[39]:
[((1, 2), 4),
((4, 2), 2),
((2, 2), 2),
((3, 5), 1),
((3, 3), 1),
((5, 3), 1),
((2, 4), 1),
((2, 3), 1),
((4, 3), 1),
((1, 1), 1)]
数组的维数,并使用a
和所有对的组合列表,但我仍然无法摆脱循环。
更新:
(a)您是否只对2个数字组合的频率感兴趣(并且对3个数字组合的频率不感兴趣)?
是的,我只对组合(2个数字)感兴趣
(b)您是否要将(3,5)视为与(5,3)不同,或者您是否想将它们视为同一事物的两次出现?
实际上两种方法都很好 - 如果需要,我总是可以事先对我的数组进行排序:
np.isin()
UPDATE2:
您是否希望(a,b)和(b,a)之间的区别仅仅由于a和b的源列,或者甚至是其他?明白这个问题,请考虑三排
a = np.sort(a, axis=1)
。您认为这里的输出应该是什么?什么应该是不同的2元组,它们的频率应该是多少?
[[1,2,1], [3,1,2], [1,2,5]]
我希望得到以下结果:
In [40]: a = np.array([[1,2,1],[3,1,2],[1,2,5]])
In [41]: a
Out[41]:
array([[1, 2, 1],
[3, 1, 2],
[1, 2, 5]])
因为它更灵活,所以我想把(a,b)和(b,a)算作我可以做到的同一对元素:
In [42]: pair_freq(a).most_common()
Out[42]:
[((1, 2), 3),
((1, 1), 1),
((2, 1), 1),
((3, 1), 1),
((3, 2), 1),
((1, 5), 1),
((2, 5), 1)]
如果你的元素不是太大非负整数In [43]: pair_freq(a, sort=True).most_common()
Out[43]: [((1, 2), 4), ((1, 1), 1), ((1, 3), 1), ((2, 3), 1), ((1, 5), 1), ((2, 5), 1)]
很快:
bincount
样品运行:
from collections import Counter
from itertools import combinations
import numpy as np
def pairs(a):
M = a.max() + 1
a = a.T
return sum(np.bincount((M * a[j] + a[j+1:]).ravel(), None, M*M)
for j in range(len(a) - 1)).reshape(M, M)
def pairs_F_3(a):
M = a.max() + 1
return (np.bincount(a[1:].ravel() + M*a[:2].ravel(), None, M*M) +
np.bincount(a[2].ravel() + M*a[0].ravel(), None, M*M))
def pairs_F(a):
M = a.max() + 1
a = np.ascontiguousarray(a.T) # contiguous columns (rows after .T)
# appear to be typically perform better
# thanks @ning chen
return sum(np.bincount((M * a[j] + a[j+1:]).ravel(), None, M*M)
for j in range(len(a) - 1)).reshape(M, M)
def pairs_dict(a):
p = pairs_F(a)
# p is a 2D table with the frequency of (y, x) at position y, x
y, x = np.where(p)
c = p[y, x]
return {(yi, xi): ci for yi, xi, ci in zip(y, x, c)}
def pair_freq(a, sort=False, sort_axis=-1):
a = np.asarray(a)
if sort:
a = np.sort(a, axis=sort_axis)
res = Counter()
for row in a:
res.update(combinations(row, 2))
return res
from timeit import timeit
A = [np.random.randint(0, 1000, (1000, 120)),
np.random.randint(0, 100, (100000, 12))]
for a in A:
print('shape:', a.shape, 'range:', a.max() + 1)
res2 = pairs_dict(a)
res = pair_freq(a)
print(f'results equal: {res==res2}')
print('bincount', timeit(lambda:pairs(a), number=10)*100, 'ms')
print('bc(F) ', timeit(lambda:pairs_F(a), number=10)*100, 'ms')
print('bc->dict', timeit(lambda:pairs_dict(a), number=10)*100, 'ms')
print('Counter ', timeit(lambda:pair_freq(a), number=4)*250,'ms')
我有一个想法,代码如下。我的代码最大的缺点是随着列的增加它运行得非常慢,而且它比@Paul Panzer的代码慢。我向Paul Panzer道歉。
如果你想更快,只需忽略num_to_items的功能。因为shape: (1000, 120) range: 1000
results equal: True
bincount 461.14772390574217 ms
bc(F) 435.3669326752424 ms
bc->dict 932.1215840056539 ms
Counter 3473.3258984051645 ms
shape: (100000, 12) range: 100
results equal: True
bincount 89.80463854968548 ms
bc(F) 43.449611216783524 ms
bc->dict 46.470773220062256 ms
Counter 1987.6734036952257 ms
等于(1, 1)
。
1*2**20 + 1