我在 Optuna 中使用 Hyperband 算法时发现了一个问题。根据 Hyperband 算法,当 min_resources = 5、max_resources = 20 和 reduction_factor = 2 时,搜索应从支架 1 的 4 模型的 初始空间开始,每个模型接收 第一轮 5 epoch。随后,每轮模型的数量减少 2 倍,下一个括号的搜索空间也应减少 2 倍,即括号 2 将具有 2 模型的初始搜索空间,并且数量其余模型的历元数在后续的每一轮中都会加倍。所以模型总数应该是 11 是预期的,但它正在训练很多模型。
文章链接:- https://arxiv.org/pdf/1603.06560.pdf
import optuna
import numpy as np
import pandas as pd
from tensorflow.keras.layers import Dense,Flatten,Dropout
import tensorflow as tf
from tensorflow.keras.models import Sequential
# Toy dataset generation
def generate_toy_dataset():
np.random.seed(0)
X_train = np.random.rand(100, 10)
y_train = np.random.randint(0, 2, size=(100,))
X_val = np.random.rand(20, 10)
y_val = np.random.randint(0, 2, size=(20,))
return X_train, y_train, X_val, y_val
X_train, y_train, X_val, y_val = generate_toy_dataset()
# Model building function
def build_model(trial):
model = Sequential()
model.add(Dense(units=trial.suggest_int('unit_input', 20, 30),
activation='selu',
input_shape=(X_train.shape[1],)))
num_layers = trial.suggest_int('num_layers', 2, 3)
for i in range(num_layers):
units = trial.suggest_int(f'num_layer_{i}', 20, 30)
activation = trial.suggest_categorical(f'activation_layer_{i}', ['relu', 'selu', 'tanh'])
model.add(Dense(units=units, activation=activation))
if trial.suggest_categorical(f'dropout_layer_{i}', [True, False]):
model.add(Dropout(rate=0.5))
model.add(Dense(1, activation='sigmoid'))
optimizer_name = trial.suggest_categorical('optimizer', ['adam', 'rmsprop'])
if optimizer_name == 'adam':
optimizer = tf.keras.optimizers.Adam()
else:
optimizer = tf.keras.optimizers.RMSprop()
model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy', tf.keras.metrics.AUC(name='val_auc')])
return model
def objective(trial):
model = build_model(trial)
# Assuming you have your data prepared
# Modify the fit method to include AUC metric
history = model.fit(X_train, y_train, validation_data=(X_val, y_val), verbose=1)
# Check if 'val_auc' is recorded
auc_key = None
for key in history.history.keys():
if key.startswith('val_auc'):
auc_key = key
print(f"auc_key is {auc_key}")
break
if auc_key is None:
raise ValueError("AUC metric not found in history. Make sure it's being recorded during training.")
# Report validation AUC for each model
if auc_key =="val_auc":
step=0
else:
step = int(auc_key.split('_')[-1])
auc_value=history.history[auc_key][0]
trial.report(auc_value, step=step)
print(f"prune or not:-{trial.should_prune()}")
if trial.should_prune():
raise optuna.TrialPruned()
return history.history[auc_key]
# Optuna study creation
study = optuna.create_study(
direction='maximize',
pruner=optuna.pruners.HyperbandPruner(
min_resource=5,
max_resource=20,
reduction_factor=2
)
)
# Start optimization
study.optimize(objective)
你没有在`study.optimize
中设置参数
n_trials