df1.pd<- df1 %>% mutate_at(c('x1'), ~(scale(.) %>% as.vector))
df1.pd<- df1 %>% mutate_at(c('x2'), ~(scale(.) %>% as.vector))
您刚刚找到对数函数的两个属性:
log(x^2)= 2 * log(x)
log(x*y)= log(x) + log(y)
因此,您要估计的模型无法通过线性回归方法估算。您可能需要将不同的数据转换与登记或原始变量进行考虑。
还请参见下面的可再现示例,我只使用了log(x^2)= 2*log(x)。可以检测到线性依赖性,例如,通过函数(另请参见下文)。从估计中降低系数也暗示了模型估计矩阵中的共线柱。有时,线性依赖性仅在估计功能中突击到数据转换后才出现,请参见内部转换的示例,示例部分中的帮助页detect.lindep
从软件包
plm
?detect.lindep
)。
library(plm) data("Grunfeld") pGrun <- pdata.frame(Grunfeld) pGrun$lvalue <- log(pGrun$value) # log(x) pGrun$lvalue2 <- log(pGrun$value^2) # log(x^2) == 2 * log(x) mod <- plm(inv ~ lvalue + lvalue2 + capital, data = pGrun, model = "within") summary(mod) #> Oneway (individual) effect Within Model #> #> Call: #> plm(formula = inv ~ lvalue + lvalue2 + capital, data = pGrun, #> model = "within") #> #> Balanced Panel: n = 10, T = 20, N = 200 #> #> Residuals: #> Min. 1st Qu. Median 3rd Qu. Max. #> -186.62916 -20.56311 -0.17669 20.66673 300.87714 #> #> Coefficients: (1 dropped because of singularities) #> Estimate Std. Error t-value Pr(>|t|) #> lvalue 30.979345 17.592730 1.7609 0.07988 . #> capital 0.360764 0.020078 17.9678 < 2e-16 *** #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> Total Sum of Squares: 2244400 #> Residual Sum of Squares: 751290 #> R-Squared: 0.66525 #> Adj. R-Squared: 0.64567 #> F-statistic: 186.81 on 2 and 188 DF, p-value: < 2.22e-16 detect.lindep(mod) # run on the model #> [1] "Suspicious column number(s): 1, 2" #> [1] "Suspicious column name(s): lvalue, lvalue2" detect.lindep(pGrun) # run on the data #> [1] "Suspicious column number(s): 6, 7" #> [1] "Suspicious column name(s): lvalue, lvalue2"