我尝试编写一个简单的脚本,为每个时间步更新散点图
t
。我想做得尽可能简单。但它所做的只是打开一扇我什么也看不见的窗户。窗户就结冰了。这可能只是一个小错误,但我找不到它。
data.dat
的格式为
x y
Timestep 1 1 2
3 1
Timestep 2 6 3
2 1
(文件仅包含数字)
import numpy as np
import matplotlib.pyplot as plt
import time
# Load particle positioins
with open('//home//user//data.dat', 'r') as fp:
particles = []
for line in fp:
line = line.split()
if line:
line = [float(i) for i in line]
particles.append(line)
T = 100
numbParticles = 2
x, y = np.array([]), np.array([])
plt.ion()
plt.figure()
plt.scatter(x,y)
for t in range(T):
plt.clf()
for k in range(numbP):
x = np.append(x, particles[numbParticles*t+k][0])
y = np.append(y, particles[numbParticles*t+k][1])
plt.scatter(x,y)
plt.draw()
time.sleep(1)
x, y = np.array([]), np.array([])
制作动画最简单、最干净的方法是使用 matplotlib.animation 模块。
由于散点图返回一个
matplotlib.collections.PathCollection
,因此更新它的方法是调用其 set_offsets
方法。您可以向其传递形状 (N, 2) 的数组或 N 2 元组的列表 - 每个 2 元组都是一个 (x,y)
坐标。
例如,
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
T = 100
numbParticles = 2
particles = np.random.random((T,numbParticles)).tolist()
x, y = np.array([]), np.array([])
def init():
pathcol.set_offsets([[], []])
return [pathcol]
def update(i, pathcol, particles):
pathcol.set_offsets(particles[i])
return [pathcol]
fig = plt.figure()
xs, ys = zip(*particles)
xmin, xmax = min(xs), max(xs)
ymin, ymax = min(ys), max(ys)
ax = plt.axes(xlim=(xmin, xmax), ylim=(ymin, ymax))
pathcol = plt.scatter([], [], s=100)
anim = animation.FuncAnimation(
fig, update, init_func=init, fargs=(pathcol, particles), interval=1000, frames=T,
blit=True, repeat=True)
plt.show()
循环位于 FuncAnimation() 内部,所以你看不到它。如果你愿意的话,你可以查看源代码(实际上那里没有循环,而是一个迭代器),但你也可以接受从外部看到的
FuncAnimation(fig, update, interval=1000, frames=100)
只会每1000毫秒调用一次函数update
并将 i
加 1 直到 frames
给出的数字。
我终于找到了解决办法。您只需使用此脚本即可完成此操作。我尽量保持简单:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
# Helps me to get the data from the file I want to plot
N = 0
# Load particle positioins
with open('//home//user//data.dat', 'r') as fp:
particles = []
for line in fp:
line = line.split()
particles.append(line)
# Create new Figure and an Axes which fills it.
fig = plt.figure(figsize=(7, 7))
ax = fig.add_axes([0, 0, 1, 1], frameon=True)
border = 100
ax.set_xlim(-border, border), ax.set_xticks([])
ax.set_ylim(-border, border), ax.set_yticks([])
# particle data
p = 18 # number of particles
myPa = np.zeros(p, dtype=[('position', float, 2)])
# Construct the scatter which we will update during animation
scat = ax.scatter(myPa['position'][:, 0], myPa['position'][:, 1])
def update(frame_number):
# New positions
myPa['position'][:] = particles[N*p:N*p+p]
# Update the scatter collection, with the new colors, sizes and positions.
scat.set_offsets(myPa['position'])
increment()
def increment():
global N
N = N+1
# Construct the animation, using the update function as the animation director.
animation = FuncAnimation(fig, update, interval=20)
plt.show()