我有一个2D点(x,y),我想用这篇文章拟合椭圆
fit a ellipse in Python given a set of points xi=(xi,yi)
但我的结果是axes = [ 0.93209407 nan]
,因为在函数ellipse_axis_length
中down2
是一个减号,所以res2无效,怎么办呢?如果我想根据数据集绘制椭圆,并计算数据点和椭圆之间的误差,我该怎么办?
代码是这样的:
import numpy as np
import numpy.linalg as linalg
import matplotlib.pyplot as plt
def fitEllipse(x,y):
x = x[:,np.newaxis]
y = y[:,np.newaxis]
D = np.hstack((x*x, x*y, y*y, x, y, np.ones_like(x)))
S = np.dot(D.T,D)
C = np.zeros([6,6])
C[0,2] = C[2,0] = 2; C[1,1] = -1
E, V = linalg.eig(np.dot(linalg.inv(S), C))
n = np.argmax(np.abs(E))
a = V[:,n]
return a
def ellipse_center(a):
b,c,d,f,g,a = a[1]/2, a[2], a[3]/2, a[4]/2, a[5], a[0]
num = b*b-a*c
x0=(c*d-b*f)/num
y0=(a*f-b*d)/num
return np.array([x0,y0])
def ellipse_angle_of_rotation( a ):
b,c,d,f,g,a = a[1]/2, a[2], a[3]/2, a[4]/2, a[5], a[0]
return 0.5*np.arctan(2*b/(a-c))
def ellipse_axis_length( a ):
b,c,d,f,g,a = a[1]/2, a[2], a[3]/2, a[4]/2, a[5], a[0]
up = 2*(a*f*f+c*d*d+g*b*b-2*b*d*f-a*c*g)
down1=(b*b-a*c)*( (c-a)*np.sqrt(1+4*b*b/((a-c)*(a-c)))-(c+a))
down2=(b*b-a*c)*( (a-c)*np.sqrt(1+4*b*b/((a-c)*(a-c)))-(c+a))
res1=np.sqrt(up/down1)
res2=np.sqrt(up/down2)
return np.array([res1, res2])
def find_ellipse(x, y):
xmean = x.mean()
ymean = y.mean()
x = x - xmean
y = y - ymean
a = fitEllipse(x,y)
center = ellipse_center(a)
center[0] += xmean
center[1] += ymean
phi = ellipse_angle_of_rotation(a)
axes = ellipse_axis_length(a)
x += xmean
y += ymean
return center, phi, axes
if __name__ == '__main__':
points = [( 0 , 3),
( 1 , 2),
( 1 , 7),
( 2 , 2),
( 2 , 4),
( 2 , 5),
( 2 , 6),
( 2 ,14),
( 3 , 4),
( 4 , 4),
( 5 , 5),
( 5 ,14),
( 6 , 4),
( 7 , 3),
( 7 , 7),
( 8 ,10),
( 9 , 1),
( 9 , 8),
( 9 , 9),
(10, 1),
(10, 2),
(10 ,12),
(11 , 0),
(11 , 7),
(12 , 7),
(12 ,11),
(12 ,12),
(13 , 6),
(13 , 8),
(13 ,12),
(14 , 4),
(14 , 5),
(14 ,10),
(14 ,13)]
fig, axs = plt.subplots(2, 1, sharex = True, sharey = True)
a_points = np.array(points)
x = a_points[:, 0]
y = a_points[:, 1]
axs[0].plot(x,y)
center, phi, axes = find_ellipse(x, y)
print "center = ", center
print "angle of rotation = ", phi
print "axes = ", axes
axs[1].plot(x, y)
axs[1].scatter(center[0],center[1], color = 'red', s = 100)
axs[1].set_xlim(x.min(), x.max())
axs[1].set_ylim(y.min(), y.max())
plt.show()
我认为代码中存在错误。
关于将椭圆拟合到一组数据点,我发现了一些其他问题(1,2),它们都使用了here的相同代码。
在做拟合:
def fitEllipse(x,y):
x = x[:,np.newaxis]
y = y[:,np.newaxis]
D = np.hstack((x*x, x*y, y*y, x, y, np.ones_like(x)))
S = np.dot(D.T,D)
C = np.zeros([6,6])
C[0,2] = C[2,0] = 2; C[1,1] = -1
E, V = eig(np.dot(inv(S), C))
n = np.argmax(np.abs(E))
a = V[:,n]
return a
使用来自E
的最大绝对特征值来选择特征值 - 特征向量对。然而,在Fitzgibbon,Pilu和Fischer在Fitzgibbon,A.W.,Pilu,M。和Fischer R.B.的原始论文中,椭圆的直接最小二乘拟合,1996:
我们注意到特征系统(6)的解决方案给出了6个特征值 - 特征向量对(
\lambda_i, u_i
)。如果(8)中平方根下的项为正,则这些对中的每一对都产生局部最小值。一般来说,S
是正定的,所以分母u_i^T S u_i
对所有u_i
都是正的。因此,如果\lambda_i>0
存在平方根。
他们进一步证明了只有一个正特征值解,这使得它也是6个特征值中的最大值。
但是,通过np.argmax(np.abs(E))
找到这个最大值可以选择原来的负值,从而给出错误的答案。
我找到了一个证明问题的具体例子。下面是(x,y)坐标数组:
159.598484728,45.0095214844
157.713012695,45.7333132048
156.163772773,46.6618041992
154.15536499,47.3460795985
152.140428382,48.0673522949
150.045213426,48.4620666504
148.194464489,47.868850708
145.55770874,47.6356541717
144.0753479,48.6449446276
144.19475866,50.200668335
144.668289185,51.7677851197
145.55770874,53.033584871
147.632995605,53.5380252111
149.411834717,52.9216872972
150.568775939,51.6947631836
151.23727763,50.390045166
153.265945435,49.7778711963
155.934188843,49.8835742956
158.305969238,49.5737389294
160.677734375,49.1867334409
162.675320529,48.4620666504
163.938919067,47.4491661856
163.550473712,45.841796875
161.863616943,45.0017850512
保存为'contour ellipse.text'并运行此脚本将给出如下所示的图:
import numpy
import pandas as pd
from matplotlib.patches import Ellipse
def fitEllipse(cont,method):
x=cont[:,0]
y=cont[:,1]
x=x[:,None]
y=y[:,None]
D=numpy.hstack([x*x,x*y,y*y,x,y,numpy.ones(x.shape)])
S=numpy.dot(D.T,D)
C=numpy.zeros([6,6])
C[0,2]=C[2,0]=2
C[1,1]=-1
E,V=numpy.linalg.eig(numpy.dot(numpy.linalg.inv(S),C))
if method==1:
n=numpy.argmax(numpy.abs(E))
else:
n=numpy.argmax(E)
a=V[:,n]
#-------------------Fit ellipse-------------------
b,c,d,f,g,a=a[1]/2., a[2], a[3]/2., a[4]/2., a[5], a[0]
num=b*b-a*c
cx=(c*d-b*f)/num
cy=(a*f-b*d)/num
angle=0.5*numpy.arctan(2*b/(a-c))*180/numpy.pi
up = 2*(a*f*f+c*d*d+g*b*b-2*b*d*f-a*c*g)
down1=(b*b-a*c)*( (c-a)*numpy.sqrt(1+4*b*b/((a-c)*(a-c)))-(c+a))
down2=(b*b-a*c)*( (a-c)*numpy.sqrt(1+4*b*b/((a-c)*(a-c)))-(c+a))
a=numpy.sqrt(abs(up/down1))
b=numpy.sqrt(abs(up/down2))
#---------------------Get path---------------------
ell=Ellipse((cx,cy),a*2.,b*2.,angle)
ell_coord=ell.get_verts()
params=[cx,cy,a,b,angle]
return params,ell_coord
def plotConts(contour_list):
'''Plot a list of contours'''
import matplotlib.pyplot as plt
fig=plt.figure()
ax2=fig.add_subplot(111)
for ii,cii in enumerate(contour_list):
x=cii[:,0]
y=cii[:,1]
ax2.plot(x,y,'-')
plt.show(block=False)
#-------------------Read in data-------------------
df=pd.read_csv('contour_ellipse.txt')
data=numpy.array(df)
params1,ell1=fitEllipse(data,1)
params2,ell2=fitEllipse(data,2)
plotConts([data,ell1,ell2])
小椭圆是原始代码,绿色椭圆是固定代码。
这个错误不会每次出现,因为很多次最大值也是绝对值的最大值。
一些令人困惑的事情:
如果你从这里看看Fitzgibbon的论文:http://cseweb.ucsd.edu/~mdailey/Face-Coord/ellipse-specific-fitting.pdf,他们说
由于C的特征值是{-2,-1,2,0,0,0},从引理1我们得到(8)恰好有一个正特征值
\lambda_i < 0
我认为这是一个错字,而<
应该是>
。
他们说,另一篇谈论这个问题的论文(https://github.com/bdhammel/least-squares-ellipse-fitting/blob/master/media/WSCG98.pdf)
我们正在寻找对应于最小正特征值
a_k
的特征向量\labmda_k
令人困惑的是,应该只有一个积极因素。
最后,如果要拟合的数据数小于6,参数数量也会给你带来问题。