Error in dayOfYear >= tau_1_A && dayOfYear < tau_2_A :
'length = 555' in coercion to 'logical(1)'
我认为,模型的初始条件应基于经验值和功能
f
的图来起作用。我愿意尝试除了minpack.lm ::nlslm.
之外的其他功能。
我的代码是我的代码:
## Complete the data frame qt
qt <- tidyr::complete(qt, dayOfYear = as.factor(seq(1, 365, 1)), fill = list(ql = 0, qn = 0, qa = 0))
qt <- qt[order(qt$dayOfYear),]
qt$dayOfYear <- as.numeric(levels(qt$dayOfYear))[qt$dayOfYear]
## Define the model
f <- function(dayOfYear, tau_1_A, tau_2_A, h_1_L, h_2_L, delta_1_L, delta_2_L, alpha_1_L, alpha_2_L){
test <- ifelse(dayOfYear < tau_1_A, 0,
ifelse(dayOfYear >= tau_1_A && dayOfYear < tau_2_A,
h_1_L*exp(-1/2*((((log((dayOfYear - tau_1_A)/delta_1_L))^2)/alpha_1_L)^2)),
h_2_L*exp(-1/2*((((log((dayOfYear - tau_2_A)/delta_2_L))^2)/alpha_2_L)^2))))
## print(test)
}
## Check the initial conditions
k <- c()
for(i in 1:365){
k[i] <- f(dayOfYear = i,
tau_1_A = 110,
tau_2_A = 200,
h_1_L = 0.5,
h_2_L = 2.5,
delta_1_L = 50,
delta_2_L = 30,
alpha_1_L = 0.1,
alpha_2_L = 0.5)
}
plot(qt$dayOfYear, qt$ql)
lines(1:365, k, type = "l", col = "red")
## Fit the nonlinear model
mod <- minpack.lm::nlsLM(ql ~ f(dayOfYear, tau_1_A,
tau_2_A,
h_1_L,
h_2_L,
delta_1_L,
delta_2_L,
alpha_1_L,
alpha_2_L),
data=qt,
start=list(tau_1_A = 110,
tau_2_A = 200,
h_1_L = 0.5,
h_2_L = 2.5,
delta_1_L = 50,
delta_2_L = 30,
alpha_1_L = 0.1,
alpha_2_L = 0.5))
在没有命令tidyr ::完整的数据的情况下,是黄土曲线(我想适合的模型给出了双峰分布):
在此处数据:
qt <- structure(list(dayOfYear = structure(c(5L, 5L, 5L, 5L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 21L, 21L, 21L, 21L, 21L, 21L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L,
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 26L, 32L, 32L, 32L, 32L,
32L, 32L, 32L, 32L, 32L, 32L, 33L, 33L, 33L, 33L, 33L, 33L, 33L,
33L, 33L, 33L, 33L, 33L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L,
34L, 34L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 42L, 42L, 42L, 42L,
42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 43L, 43L, 43L, 43L, 43L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 44L, 44L, 44L, 44L, 45L,
45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L,
45L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L,
46L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L,
6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 11L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 17L,
17L, 17L, 18L, 18L, 18L, 19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 21L, 21L,
21L, 22L, 22L, 22L, 22L, 22L, 23L, 24L, 24L, 25L, 25L, 25L, 25L,
27L, 27L, 27L, 27L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 30L, 30L, 30L, 30L, 30L,
30L, 30L, 30L, 30L, 30L, 31L, 35L, 35L, 35L, 35L, 35L, 35L, 35L,
35L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 38L, 38L, 38L, 38L, 38L, 38L, 39L,
39L, 39L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L,
41L, 41L, 41L, 41L, 41L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L,
47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 48L, 48L,
48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L), levels = c("128",
"136", "137", "138", "139", "142", "143", "144", "145", "149",
"157", "158", "159", "160", "162", "163", "164", "166", "167",
"173", "184", "185", "186", "187", "189", "192", "197", "198",
"199", "200", "201", "220", "221", "222", "232", "233", "235",
"236", "253", "255", "256", "257", "258", "286", "290", "292",
"299", "308"), class = "factor"), ql = c(0, 0, 0, 0, 0, 0.280769230769231,
0, 0, 0, 0, 0.0807692307692308, 0.0423076923076923, 0.00769230769230769,
0.0769230769230769, 0.461538461538462, 0.292307692307692, 0.346153846153846,
0.0538461538461538, 0.0961538461538462, 0, 0.119230769230769,
0.196153846153846, 0.723076923076923, 0.361538461538462, 0.307692307692308,
0.342307692307692, 0.0307692307692308, 0.546153846153846, 0.0576923076923077,
0.207692307692308, 0.0576923076923077, 0.0307692307692308, 0.0923076923076923,
0.165384615384615, 0.107692307692308, 0.192307692307692, 0.942307692307692,
1.91923076923077, 0.546153846153846, 0.169230769230769, 0.473076923076923,
0.484615384615385, 0.673076923076923, 0.807692307692308, 0.884615384615385,
0.7, 0.173076923076923, 0.346153846153846, 0.446153846153846,
0.169230769230769, 0.411538461538462, 0.488461538461538, 0.657692307692308,
0.338461538461538, 0.503846153846154, 0.126923076923077, 0.323076923076923,
0.2, 0.753846153846154, 0.223076923076923, 0.0730769230769231,
0.184615384615385, 0.0884615384615385, 0.0192307692307692, 0.407692307692308,
0.769230769230769, 0.576923076923077, 0.15, 0.0807692307692308,
0.119230769230769, 0.326923076923077, 0.630769230769231, 0.130769230769231,
0.142307692307692, 0.576923076923077, 0, 0.0807692307692308,
0.0153846153846154, 0.0346153846153846, 0.0538461538461538, 0.0807692307692308,
0.0192307692307692, 0.05, 0.0615384615384615, 0.188461538461538,
0.130769230769231, 0.157692307692308, 0.00384615384615385, 0.257692307692308,
0.107692307692308, 0.0961538461538462, 0.111538461538462, 0.315384615384615,
0.315384615384615, 0.0769230769230769, 0.0346153846153846, 1.03846153846154,
0.130769230769231, 0.0269230769230769, 0.180769230769231, 0.246153846153846,
0.465384615384615, 0.134615384615385, 0.0423076923076923, 0.0884615384615385,
0.0192307692307692, 0.0461538461538462, 0.00769230769230769,
0.00769230769230769, 0.45, 0.0461538461538462, 0.0346153846153846,
0.0192307692307692, 0.25, 0.0307692307692308, 0.0153846153846154,
0.0269230769230769, 0.369230769230769, 0.0615384615384615, 0.0153846153846154,
0.1, 0.0807692307692308, 0.176923076923077, 0.173076923076923,
0.0538461538461538, 0.0153846153846154, 0.0269230769230769, 0.0307692307692308,
0.480769230769231, 0.103846153846154, 0.0307692307692308, 0.196153846153846,
0.0307692307692308, 0.573076923076923, 0.261538461538462, 0.05,
0.346153846153846, 0.111538461538462, 0.146153846153846, 0, 0.161538461538462,
0.169230769230769, 0.407692307692308, 0.473076923076923, 0.115384615384615,
0.45, 0.384615384615385, 0.0307692307692308, 0.0692307692307692,
0.288461538461538, 0.169230769230769, 0.134615384615385, 0.103846153846154,
0.230769230769231, 0.1, 0.0269230769230769, 0.442307692307692,
0.142307692307692, 1.01153846153846, 0.169230769230769, 0.169230769230769,
0.0615384615384615, 0.0192307692307692, 0.0192307692307692, 0.0307692307692308,
0.00384615384615385, 0, 0, 0, 0, 0, 0, 0, 0.0115384615384615,
0.0269230769230769, 0.00769230769230769, 0.0346153846153846,
0.00769230769230769, 0, 0.0153846153846154, 0, 0, 0.00769230769230769,
0, 0, 0, 0.0346153846153846, 0, 0.00384615384615385, 0.00769230769230769,
0.0115384615384615, 0.0230769230769231, 0.0153846153846154, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0423076923076923,
0.0192307692307692, 0.0269230769230769, 0.461538461538462, 0.0269230769230769,
0.0192307692307692, 0.0153846153846154, 0.0346153846153846, 0.0115384615384615,
0.415384615384615, 0.0923076923076923, 0.0115384615384615, 0.0384615384615385,
0.0192307692307692, 0, 0.00769230769230769, 0.130769230769231,
0.0307692307692308, 0.0423076923076923, 0.0153846153846154, 0.0576923076923077,
0.00384615384615385, 0, 0, 0.0653846153846154, 0.0230769230769231,
0.219230769230769, 0.0807692307692308, 0.176923076923077, 0.426923076923077,
0.00384615384615385, 0.192307692307692, 0.0384615384615385, 0.0423076923076923,
0, 0.0692307692307692, 0.15, 0.0230769230769231, 0.0153846153846154,
0.234615384615385, 0.107692307692308, 0.0423076923076923, 0.0307692307692308,
0.0384615384615385, 0.0653846153846154, 0.0230769230769231, 0.0384615384615385,
0.0653846153846154, 0.126923076923077, 0.115384615384615, 0.0153846153846154,
0.184615384615385, 0.0615384615384615, 0.0153846153846154, 0.0576923076923077,
0, 0.00769230769230769, 0, 0, 0, 0.00384615384615385, 0.00769230769230769,
0, 0, 0, 0, 0.0230769230769231, 0, 0, 0, 0, 0, 0, 0.00769230769230769,
0, 0, 0, 0, 0, 0, 0, 0.00769230769230769, 0, 0, 0, 0.0461538461538462,
0.0692307692307692, 0.00769230769230769, 0.0307692307692308,
0, 0.00769230769230769, 0, 0.00384615384615385, 0.00769230769230769,
0, 0.00769230769230769, 0.0115384615384615, 0, 0, 0, 0, 0, 0.00769230769230769,
0, 0.00384615384615385, 0, 0.0153846153846154, 0.00384615384615385,
0.0153846153846154, 0.00769230769230769, 0, 0.35, 0.453846153846154,
1.10384615384615, 1.62692307692308, 2.63846153846154, 0.811538461538462,
1.51153846153846, 0.457692307692308, 0.311538461538462, 0.376923076923077,
0.780769230769231, 0.265384615384615, 0.276923076923077, 0.365384615384615,
0.184615384615385, 0.465384615384615, 0.569230769230769, 2.03461538461538,
0.746153846153846, 1.67692307692308, 0.734615384615385, 1.60384615384615,
1.63461538461538, 1.31923076923077, 1.65769230769231, 0.538461538461538,
0.257692307692308, 0.565384615384615, 1.08076923076923, 0.315384615384615,
0.465384615384615, 0.7, 0.761538461538461, 0.480769230769231,
0.446153846153846, 0.619230769230769, 0.6, 1.15769230769231,
0.292307692307692, 0.173076923076923, 0.419230769230769, 0.219230769230769,
0.123076923076923, 0.230769230769231, 0.138461538461538, 0.0192307692307692,
1.61153846153846, 0.965384615384615, 0.238461538461538, 0.488461538461538,
0.219230769230769, 0.111538461538462, 0.392307692307692, 0.134615384615385,
0.253846153846154, 0.85, 0.280769230769231, 0.45, 0.715384615384615,
0.453846153846154, 0.357692307692308, 0.130769230769231, 0.3,
0.165384615384615, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), qn = c(0,
0, 0, 0, 0.0769230769230769, 0.0423076923076923, 0.0153846153846154,
0.0115384615384615, 0.00769230769230769, 0.0346153846153846,
0.0538461538461538, 0.0384615384615385, 0.0307692307692308, 0.0269230769230769,
0.0423076923076923, 0.142307692307692, 0.0653846153846154, 0.0307692307692308,
0.0230769230769231, 0.0192307692307692, 0.0230769230769231, 0.0153846153846154,
0.05, 0.0615384615384615, 0.0923076923076923, 0.0576923076923077,
0.0538461538461538, 0.0423076923076923, 0.0307692307692308, 0.1,
0.0846153846153846, 0.0115384615384615, 0.0653846153846154, 0.0961538461538462,
0.0346153846153846, 0.0423076923076923, 0.134615384615385, 0.426923076923077,
0.103846153846154, 0.05, 0.0961538461538462, 0.126923076923077,
0.0884615384615385, 0.0961538461538462, 0.0692307692307692, 0.123076923076923,
0.0807692307692308, 0.0769230769230769, 0.103846153846154, 0.115384615384615,
0.215384615384615, 0.307692307692308, 0.338461538461538, 0.276923076923077,
0.0923076923076923, 0.0423076923076923, 0.0846153846153846, 0.0538461538461538,
0.126923076923077, 0.1, 0.0230769230769231, 0.0730769230769231,
0.0461538461538462, 0.0653846153846154, 0.157692307692308, 0.223076923076923,
0.107692307692308, 0.146153846153846, 0.0346153846153846, 0.0846153846153846,
0.0961538461538462, 0.111538461538462, 0.0961538461538462, 0.0653846153846154,
0, 0.180769230769231, 0.134615384615385, 0.0423076923076923,
0.0692307692307692, 0.0615384615384615, 0.0884615384615385, 0.0461538461538462,
0.0461538461538462, 0.0807692307692308, 0.153846153846154, 0.05,
0.0692307692307692, 0.0769230769230769, 0.111538461538462, 0.0846153846153846,
0.0807692307692308, 0.0423076923076923, 0.0730769230769231, 0.0923076923076923,
0.0423076923076923, 0.0384615384615385, 0.288461538461538, 0.0730769230769231,
0.0538461538461538, 0.0730769230769231, 0.115384615384615, 0.119230769230769,
0.0923076923076923, 0, 0.0692307692307692, 0.0230769230769231,
0.0115384615384615, 0.0192307692307692, 0.0153846153846154, 0.0576923076923077,
0.0153846153846154, 0.0269230769230769, 0.00384615384615385,
0.0153846153846154, 0.0192307692307692, 0.0192307692307692, 0.0346153846153846,
0.138461538461538, 0.0153846153846154, 0.0230769230769231, 0.00769230769230769,
0.0307692307692308, 0.0615384615384615, 0.0384615384615385, 0.0153846153846154,
0.0153846153846154, 0.0115384615384615, 0.0192307692307692, 0.0461538461538462,
0.0115384615384615, 0.0384615384615385, 0.0115384615384615, 0.00769230769230769,
0.0230769230769231, 0.0115384615384615, 0.0307692307692308, 0.0115384615384615,
0.0230769230769231, 0.00384615384615385, 0.00769230769230769,
0.00769230769230769, 0.0692307692307692, 0.0653846153846154,
0.0653846153846154, 0.0307692307692308, 0.0192307692307692, 0.0115384615384615,
0.00769230769230769, 0.0115384615384615, 0.0615384615384615,
0.0423076923076923, 0.0269230769230769, 0.00384615384615385,
0.0230769230769231, 0.00384615384615385, 0.00384615384615385,
0.0115384615384615, 0.0230769230769231, 0.0192307692307692, 0.00384615384615385,
0.00769230769230769, 0, 0, 0, 0.00384615384615385, 0.0115384615384615,
0, 0, 0, 0, 0.00384615384615385, 0, 0, 0, 0, 0.00384615384615385,
0, 0.00384615384615385, 0, 0, 0, 0, 0, 0, 0.00384615384615385,
0, 0.00384615384615385, 0.0230769230769231, 0.0115384615384615,
0, 0, 0.00384615384615385, 0, 0, 0, 0.0153846153846154, 0.0153846153846154,
0.00384615384615385, 0.00769230769230769, 0.00384615384615385,
0.0192307692307692, 0.0269230769230769, 0.0307692307692308, 0.00384615384615385,
0.00769230769230769, 0, 0, 0, 0.0384615384615385, 0.05, 0.0192307692307692,
0.0346153846153846, 0.00769230769230769, 0.0269230769230769,
0.0115384615384615, 0.0115384615384615, 0.00769230769230769,
0.0230769230769231, 0.0423076923076923, 0.0538461538461538, 0.0115384615384615,
0.0153846153846154, 0.0153846153846154, 0.0230769230769231, 0.0423076923076923,
0.0576923076923077, 0.0230769230769231, 0.0461538461538462, 0.0307692307692308,
0.0538461538461538, 0.0192307692307692, 0, 0, 0.0115384615384615,
0.0115384615384615, 0.0576923076923077, 0.0653846153846154, 0.0961538461538462,
0.0153846153846154, 0.00769230769230769, 0.0115384615384615,
0.0269230769230769, 0.0307692307692308, 0.0730769230769231, 0.0230769230769231,
0.0153846153846154, 0.0153846153846154, 0.0384615384615385, 0.0461538461538462,
0.0615384615384615, 0.0115384615384615, 0.00384615384615385,
0.00769230769230769, 0.0269230769230769, 0.0192307692307692,
0.0230769230769231, 0.0230769230769231, 0.00384615384615385,
0.0961538461538462, 0, 0.0153846153846154, 0.0384615384615385,
0.0115384615384615, 0.0153846153846154, 0, 0.00384615384615385,
0, 0, 0.0153846153846154, 0.0153846153846154, 0.0230769230769231,
0.00769230769230769, 0, 0.00384615384615385, 0.0269230769230769,
0.0192307692307692, 0, 0, 0, 0.0115384615384615, 0.0115384615384615,
0, 0.0115384615384615, 0, 0, 0, 0, 0, 0.00384615384615385, 0.00384615384615385,
0, 0.00384615384615385, 0, 0.0115384615384615, 0.0461538461538462,
0.0423076923076923, 0.0115384615384615, 0, 0.00384615384615385,
0.0153846153846154, 0, 0, 0.00384615384615385, 0.0115384615384615,
0.00769230769230769, 0.0230769230769231, 0.00769230769230769,
0, 0.0115384615384615, 0, 0.0115384615384615, 0.00769230769230769,
0, 0, 0, 0, 0.0346153846153846, 0, 0.0115384615384615, 0, 0,
0.00384615384615385, 0.00769230769230769, 0.00384615384615385,
0.0153846153846154, 0.00384615384615385, 0.00769230769230769,
0, 0, 0.00769230769230769, 0.00769230769230769, 0, 0, 0, 0.00384615384615385,
0.0153846153846154, 0, 0.00384615384615385, 0.00384615384615385,
0.00384615384615385, 0, 0.00384615384615385, 0.00769230769230769,
0.00384615384615385, 0.0115384615384615, 0.00384615384615385,
0.00769230769230769, 0, 0.00769230769230769, 0.00384615384615385,
0.0115384615384615, 0.00384615384615385, 0, 0.00384615384615385,
0.00384615384615385, 0.00769230769230769, 0.00384615384615385,
0.00769230769230769, 0.00769230769230769, 0.00384615384615385,
0, 0, 0, 0, 0.00384615384615385, 0.0115384615384615, 0.00384615384615385,
0.0115384615384615, 0.00769230769230769, 0.00769230769230769,
0.00384615384615385, 0.00384615384615385, 0, 0, 0.00384615384615385,
0.00384615384615385, 0.00384615384615385, 0, 0.00384615384615385,
0.00384615384615385, 0.0115384615384615, 0.00384615384615385,
0, 0.00384615384615385, 0, 0, 0, 0, 0, 0, 0.00384615384615385,
0, 0.00384615384615385, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0), qa = c(0, 0, 0, 0, 0.00384615384615385,
0.00384615384615385, 0.00384615384615385, 0.00384615384615385,
0, 0.0115384615384615, 0, 0.00384615384615385, 0.00384615384615385,
0, 0.00384615384615385, 0.00384615384615385, 0.0115384615384615,
0, 0, 0.00769230769230769, 0, 0.00384615384615385, 0.00769230769230769,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00769230769230769, 0.0115384615384615,
0.00384615384615385, 0, 0, 0, 0.00384615384615385, 0, 0, 0, 0,
0, 0, 0.00384615384615385, 0.00384615384615385, 0.00384615384615385,
0, 0, 0, 0.00384615384615385, 0, 0, 0, 0.00384615384615385, 0,
0, 0, 0.00769230769230769, 0, 0, 0.0115384615384615, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00384615384615385,
0, 0.00384615384615385, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00384615384615385,
0.00384615384615385, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00384615384615385, 0.00384615384615385,
0.00769230769230769, 0.00384615384615385, 0.0153846153846154,
0.00384615384615385, 0.00769230769230769, 0.00384615384615385,
0.0269230769230769, 0, 0.00384615384615385, 0, 0, 0, 0.00384615384615385,
0.00769230769230769, 0.00769230769230769, 0.00769230769230769,
0.00384615384615385, 0.00384615384615385, 0.00769230769230769,
0.0115384615384615, 0.00384615384615385, 0, 0, 0, 0.00769230769230769,
0.0115384615384615, 0.0153846153846154, 0.00384615384615385,
0, 0.00769230769230769, 0.00769230769230769, 0, 0, 0.0115384615384615,
0.00384615384615385, 0, 0, 0.00384615384615385, 0, 0.00769230769230769,
0.00769230769230769, 0, 0, 0, 0, 0.00769230769230769, 0, 0.00384615384615385,
0.00769230769230769, 0.00384615384615385, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.00384615384615385, 0, 0, 0, 0.00384615384615385, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00769230769230769, 0.00384615384615385,
0.00384615384615385, 0.00384615384615385, 0.00384615384615385,
0, 0, 0, 0, 0, 0, 0, 0.00384615384615385, 0, 0.00384615384615385,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.00384615384615385, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0.0115384615384615, 0, 0.0115384615384615,
0, 0.00384615384615385, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00384615384615385, 0.00384615384615385,
0.0115384615384615, 0.00384615384615385, 0.0115384615384615,
0, 0.00769230769230769, 0.00384615384615385, 0, 0.00769230769230769,
0.00769230769230769, 0.00769230769230769, 0, 0, 0.00769230769230769,
0.0153846153846154, 0.00384615384615385, 0, 0.00769230769230769,
0, 0, 0.00384615384615385, 0, 0, 0, 0.00384615384615385, 0, 0,
0.0115384615384615, 0, 0, 0.0192307692307692)), class = "data.frame", row.names = 124:539)
事物两次停止此工作,错误的直接原因是函数应在您的函数中为
&&
,因为您想在向量上操作而不是单个值。但是,即使更改了优化器似乎最终位于梯度是单数的空间中 - 当Tau_1_a == Tau_2_a时会发生。强迫变量相对于彼此约束时通常的技巧是重新聚集