我需要一些帮助来在R中编写一个循环函数。我有一些问题,当相同的id出现时选择上一个匹配,然后写OLD_RANK
列和NEW_RANK
列。
OLD_RANK
必须是之前比赛的NEW_RANK
。
`NEW_RANK`<- OLD_RANK+0.05(S1-S2)
这是我这个例子的数据
JUNK<- matrix(c(1,1,10,20,3,2,30,40,1,3,60,4,3,
4,5,40,1,5,10,30,7,6,20,20),ncol=4,byrow=TRUE)
colnames(JUNK) <- c("ID1","DAY","S1","S2")
JUNK<- as.data.frame(JUNK)
我认为可能是一个好的开始:
#subset to find previous match. Find matches before days and if more matches are
#found, choose the row with higher values in `days`
loop for each row
s1 <- subset(s1, DAYS < days)
s1 <- subset(s1, DAYS = max(days))
#if no match fuond JUNK$OLD_RANK<-35 and JUNK$NEW_RANK <-JUNK$OLD_RANK+0.05(S1-S2)
#if previous match is found JUNK$NEW_RANK <-JUNK$OLD_RANK+0.05(S1-S2)
预期结果:
ID1 DAYS S1 S2 OLD_RANK NEW_RANK
1 1 10 20 35 34.5
3 2 30 40 35 34.5
1 3 60 4 34.5 37.3
3 4 5 40 34.5 32.75
1 5 10 30 37.3 36.3
7 6 20 20 35 35
任何帮助都很感激。
这是一种方法:
library(dplyr)
JUNK2 <- JUNK %>%
group_by(ID1) %>%
mutate(change = 0.05*(S1-S2),
NEW_RANK = 35 + cumsum(change),
OLD_RANK = lag(NEW_RANK) %>% if_else(is.na(.), 35, .)) %>%
ungroup() # EDIT: Added to end with ungrouped table
结果:
JUNK2
# A tibble: 6 x 7
ID1 DAY S1 S2 change NEW_RANK OLD_RANK
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 10 20 -0.5 34.5 35
2 3 2 30 40 -0.5 34.5 35
3 1 3 60 4 2.8 37.3 34.5
4 3 4 5 40 -1.75 32.8 34.5
5 1 5 10 30 -1 36.3 37.3
6 7 6 20 20 0 35 35