pandas 获取多行的最小值和最大值

问题描述 投票:0回答:1

我将这些列“价格”、“功能”和“猫”作为 df。

Price   functions   cat
51272.85    8   3-8
51134.15    3   3-8
51150   8   3-8
51161.3 1   1-6
51165.45    1   1-6
51138.65    3   3-8
51060   3   3-8
51095   1   1-6
51099.5 3   3-8
51093.65    8   3-8
51108   1   1-6
51107.5 1   1-6
51112.65    6   1-6
51106.9 3   3-8
51096.9 3   3-8
51110   1   1-6
51104   1   1-6
51041.4 3   3-8
50990   3   3-8
50974.35    3   3-8
50972.95    3   3-8
50981.7 8   3-8
50989.95    1   1-6
51002.65    2   2-5
51009.45    1   1-6
50963.15    3   3-8
50972.55    8   3-8
50910.6 3   3-8
50930   1   1-6
50965   2   2-5
50925.75    3   3-8
50892.3 4   4-7
50880   3   3-8
50876.45    3   3-8
50901   8   3-8
50910   1   1-6
50941.95    7   4-7
50919.85    3   3-8
50912.45    3   3-8
50898.4 6   1-6
50930   1   1-6
50958   2   2-5
50986.15    1   1-6
50990   8   3-8
50994   8   3-8
51029   8   3-8
51030   8   3-8
51015.65    5   2-5
50997.15    3   3-8
50970   4   4-7
51002.55    1   1-6
51021.1 8   3-8
51038.15    2   2-5
51034.6 1   1-6
51070   8   3-8
51079.9 1   1-6
51140   8   3-8
51160.05    8   3-8
51174.95    1   1-6
51180   6   1-6
51148.35    6   1-6
51182   2   2-5
51170.05    6   1-6
51160.35    3   3-8
51172.15    1   1-6
51180   1   1-6
51240   8   3-8
51240   8   3-8
51235   3   3-8
51235   6   1-6
51255   8   3-8
51221   3   3-8
51230.45    1   1-6
51235   8   3-8
51258.25    8   3-8
51245.95    3   3-8
51253   1   1-6
51224.2 3   3-8
51229.85    1   1-6
51216   3   3-8
51192.95    3   3-8
51189.9 3   3-8
51199   8   3-8
51210.45    2   2-5
51240   8   3-8
51227.1 3   3-8
51217.15    3   3-8
51223   8   3-8
51225   8   3-8
51246.05    8   3-8
51254.35    8   3-8
51264.75    1   1-6
51316.15    8   3-8
51355.8 1   1-6
51425   8   3-8
51511.4 7   4-7
51490.25    6   1-6
51508.5 1   1-6
51515   7   4-7
51506.1 4   4-7
51513.95    8   3-8
51529.05    8   3-8
51515.1 6   1-6
51525   1   1-6
51500   6   1-6
51511.65    7   4-7
51529.9 1   1-6
51472.2 3   3-8
51475.05    8   3-8
51460   3   3-8
51447.85    3   3-8
51470   1   1-6
51479.4 8   3-8
51485.5 2   2-5
51461.35    6   1-6
51441.8 3   3-8
51435   3   3-8
51435.7 1   1-6
51440.5 8   3-8
51448.6 8   3-8
51446.5 3   3-8
51440.15    3   3-8
51510   8   3-8
51520.95    6   1-6
51502   3   3-8
51504   3   3-8
51470   3   3-8
51479.9 8   3-8
51455   3   3-8
51447.6 3   3-8
51439.7 6   1-6
51453.8 1   1-6
51447   3   3-8
51380.35    3   3-8
51385.35    1   1-6
51394   8   3-8
51385   3   3-8
51397.05    8   3-8
51392.7 3   3-8
51329.4 3   3-8
51340.25    8   3-8
51347.25    8   3-8
51365.35    1   1-6
51332.95    3   3-8
51337.75    6   1-6
51338.9 1   1-6
51370   8   3-8
51364.85    6   1-6
51379.6 1   1-6
51385   8   3-8
51380   6   1-6
51415   8   3-8
51404.05    6   1-6
51390.8 3   3-8
51390.15    3   3-8
51390   3   3-8
51389.5 3   3-8
51384   6   1-6
51390.6 8   3-8
51360   3   3-8
51339.3 3   3-8
51345   6   1-6
51365.6 1   1-6
51340   3   3-8
51335   3   3-8
51346.7 8   3-8
51369.95    2   2-5
51369.95    3   3-8
51392.1 7   4-7
51420   7   4-7
51415   3   3-8
51418   8   3-8
51411.15    3   3-8
51448.2 2   2-5
51439.3 6   1-6
51430   6   1-6
51430   8   3-8
51439.65    6   1-6
51430.1 8   3-8
51443.55    8   3-8
51470   8   3-8
51485   8   3-8
51487.3 8   3-8
51475   3   3-8
51485   7   4-7
51519.05    8   3-8
51520.55    8   3-8
51507.5 3   3-8
51492.9 3   3-8
51484.15    3   3-8
51495.5 8   3-8
51479   3   3-8
51480   8   3-8
51470   3   3-8
51460.85    6   1-6
51480   8   3-8
51488.15    1   1-6
51470.2 5   2-5
51453   3   3-8
51455.05    7   4-7
51455   3   3-8
51450   3   3-8
51440   6   1-6
51440   1   1-6
51437.75    6   1-6
51454.6 1   1-6
51425   3   3-8
51420   3   3-8
51427.9 1   1-6
51428.95    3   3-8
51452.65    8   3-8
51440.9 3   3-8
51450.1 8   3-8
51464.8 8   3-8
51450   3   3-8
51430   5   2-5
51442   8   3-8
51450   8   3-8
51434.45    3   3-8
51421   3   3-8
51404   3   3-8
51397.1 3   3-8
51390.15    3   3-8
51397.25    8   3-8
51381.55    3   3-8
51394.95    1   1-6
51395   8   3-8
51380   6   1-6
51390.7 7   4-7
51386.55    3   3-8
51394.95    8   3-8
51391.65    6   1-6
51399.2 2   2-5
51399       
51390   3   3-8
51390   1   1-6
51355.05    5   2-5
51369.95    1   1-6
51370   1   1-6
51359   4   4-7
51388.1 8   3-8
51391.9 8   3-8
51391.75    3   3-8
51394.8 8   3-8
51399.9 7   4-7
51421   8   3-8
51440.35    8   3-8
51425   6   1-6
51443.9 8   3-8
51445.4 8   3-8
51440.9 3   3-8
51426   4   4-7
51424.9 3   3-8
51435       
51449.5 3   3-8
51450   6   1-6
51449   6   1-6
51465.95    8   3-8
51436.6 3   3-8
51440.55    8   3-8
51425   4   4-7
51401.75    3   3-8
51409.25    8   3-8
51460   8   3-8
51470   8   3-8
51483.65    8   3-8
51469.2 6   1-6
51480   8   3-8
51461.65    6   1-6
51474   8   3-8
51484.95    8   3-8
51478.4 4   4-7
51478.05    3   3-8
51486.2 8   3-8
51462.1 3   3-8
51470.15    1   1-6
51470   6   1-6
51485   8   3-8
51548   8   3-8
51545   3   3-8
51536.3 1   1-6
51571.3 8   3-8
51560   3   3-8
51559   6   1-6
51620   8   3-8
51639.6 8   3-8
51644   8   3-8
51654.4 8   3-8
51654.45    8   3-8
51630.7 3   3-8
51632.4 8   3-8
51640   8   3-8
51644.7 8   3-8
51637.95    6   1-6
51610.65    3   3-8
51595   3   3-8
51576   6   1-6
51556.7 3   3-8
51551.15    3   3-8
51584.95    1   1-6
51577.05    1   1-6
51554.25    5   2-5
51569   1   1-6
51543.85    3   3-8
51560   8   3-8
51564.75    8   3-8
51560   3   3-8
51574   8   3-8
51570   3   3-8
51590   8   3-8
51573.2 3   3-8
51573.4 1   1-6
51538.35    3   3-8
51550   8   3-8
51549.9 6   1-6
51549.4 6   1-6
51542.75    3   3-8
51535   6   1-6
51530   3   3-8
51520   3   3-8
51540   1   1-6
51565   2   2-5
51542.2 3   3-8
51547.35    1   1-6
51545.4 3   3-8
51534.05    3   3-8
51530   3   3-8
51534   1   1-6
51525   3   3-8
51490   3   3-8
51470.6 3   3-8
51464.85    3   3-8
51435   3   3-8
51451   8   3-8
51456.35    7   4-7
51464   8   3-8
51460   3   3-8
51473.15    8   3-8
51471.75    3   3-8
51440.2 5   2-5
51426   3   3-8
51429.95    1   1-6
51435   2   2-5
51438.65    1   1-6
51412.6 3   3-8
51426.25    1   1-6
51366   3   3-8
51395   2   2-5
51410   8   3-8
51419.1 8   3-8
51408.85    6   1-6
51400   3   3-8
51398.8 3   3-8
51402.5 1   1-6
51413.5 8   3-8
51416.35    1   1-6
51422.4 8   3-8
51445   8   3-8
51440   3   3-8
51428.4 4   4-7
51437.15    1   1-6
51430.75    3   3-8
51440   8   3-8
51430.5 6   1-6
51442.05    7   4-7
51436.25    8   3-8
51474.95    8   3-8
51478.25    1   1-6
51481.35    8   3-8
51470.05    5   2-5
51469.95    3   3-8
51465.7 3   3-8
51470.7 8   3-8
51486.75    1   1-6
51493.65        Last

我想再添加 2 个列“min”和“max”。 min 将计算从前 4 或 7 行到当前 4 或 7 的价格 col 的最小值。同样,max col 将计算从前 4 或 7 行到当前 4 或 7 行的价格 col 的最大值7、需具备以下条件。 1.min和max的值只在函数有4或7的行计算。 2. 仅当 4 出现在 7 之后或 7 出现在 7 之后时才计算这些值。即,如果 4 出现在前 4 之后,则不计算最小值和最大值,如果 7 出现在前 7 之后,则同样的方式计算最小值& 不计算最大值。例如如果当前行函数为 7,则最小值和最大值将从前 4 行计算得出,如果前一行为 7,则最小值和最大值应为空。 3. 最小值和最大值也将在最后一行中根据前 4 或 7 进行计算。 最后表格应该是这样的。

Price   functions   cat min max
51272.85    8   3-8     
51134.15    3   3-8     
51150   8   3-8     
51161.3 1   1-6     
51165.45    1   1-6     
51138.65    3   3-8     
51060   3   3-8     
51095   1   1-6     
51099.5 3   3-8     
51093.65    8   3-8     
51108   1   1-6     
51107.5 1   1-6     
51112.65    6   1-6     
51106.9 3   3-8     
51096.9 3   3-8     
51110   1   1-6     
51104   1   1-6     
51041.4 3   3-8     
50990   3   3-8     
50974.35    3   3-8     
50972.95    3   3-8     
50981.7 8   3-8     
50989.95    1   1-6     
51002.65    2   2-5     
51009.45    1   1-6     
50963.15    3   3-8     
50972.55    8   3-8     
50910.6 3   3-8     
50930   1   1-6     
50965   2   2-5     
50925.75    3   3-8     
50892.3 4   4-7 0   0
50880   3   3-8     
50876.45    3   3-8     
50901   8   3-8     
50910   1   1-6     
50941.95    7   4-7 50876.45    50941.95
50919.85    3   3-8     
50912.45    3   3-8     
50898.4 6   1-6     
50930   1   1-6     
50958   2   2-5     
50986.15    1   1-6     
50990   8   3-8     
50994   8   3-8     
51029   8   3-8     
51030   8   3-8     
51015.65    5   2-5     
50997.15    3   3-8     
50970   4   4-7 50898.4 51030
51002.55    1   1-6     
51021.1 8   3-8     
51038.15    2   2-5     
51034.6 1   1-6     
51070   8   3-8     
51079.9 1   1-6     
51140   8   3-8     
51160.05    8   3-8     
51174.95    1   1-6     
51180   6   1-6     
51148.35    6   1-6     
51182   2   2-5     
51170.05    6   1-6     
51160.35    3   3-8     
51172.15    1   1-6     
51180   1   1-6     
51240   8   3-8     
51240   8   3-8     
51235   3   3-8     
51235   6   1-6     
51255   8   3-8     
51221   3   3-8     
51230.45    1   1-6     
51235   8   3-8     
51258.25    8   3-8     
51245.95    3   3-8     
51253   1   1-6     
51224.2 3   3-8     
51229.85    1   1-6     
51216   3   3-8     
51192.95    3   3-8     
51189.9 3   3-8     
51199   8   3-8     
51210.45    2   2-5     
51240   8   3-8     
51227.1 3   3-8     
51217.15    3   3-8     
51223   8   3-8     
51225   8   3-8     
51246.05    8   3-8     
51254.35    8   3-8     
51264.75    1   1-6     
51316.15    8   3-8     
51355.8 1   1-6     
51425   8   3-8     
51511.4 7   4-7 50970   51511.4
51490.25    6   1-6     
51508.5 1   1-6     
51515   7   4-7     
51506.1 4   4-7 51490.25    51515
51513.95    8   3-8     
51529.05    8   3-8     
51515.1 6   1-6     
51525   1   1-6     
51500   6   1-6     
51511.65    7   4-7 51500   51529.05
51529.9 1   1-6     
51472.2 3   3-8     
51475.05    8   3-8     
51460   3   3-8     
51447.85    3   3-8     
51470   1   1-6     
51479.4 8   3-8     
51485.5 2   2-5     
51461.35    6   1-6     
51441.8 3   3-8     
51435   3   3-8     
51435.7 1   1-6     
51440.5 8   3-8     
51448.6 8   3-8     
51446.5 3   3-8     
51440.15    3   3-8     
51510   8   3-8     
51520.95    6   1-6     
51502   3   3-8     
51504   3   3-8     
51470   3   3-8     
51479.9 8   3-8     
51455   3   3-8     
51447.6 3   3-8     
51439.7 6   1-6     
51453.8 1   1-6     
51447   3   3-8     
51380.35    3   3-8     
51385.35    1   1-6     
51394   8   3-8     
51385   3   3-8     
51397.05    8   3-8     
51392.7 3   3-8     
51329.4 3   3-8     
51340.25    8   3-8     
51347.25    8   3-8     
51365.35    1   1-6     
51332.95    3   3-8     
51337.75    6   1-6     
51338.9 1   1-6     
51370   8   3-8     
51364.85    6   1-6     
51379.6 1   1-6     
51385   8   3-8     
51380   6   1-6     
51415   8   3-8     
51404.05    6   1-6     
51390.8 3   3-8     
51390.15    3   3-8     
51390   3   3-8     
51389.5 3   3-8     
51384   6   1-6     
51390.6 8   3-8     
51360   3   3-8     
51339.3 3   3-8     
51345   6   1-6     
51365.6 1   1-6     
51340   3   3-8     
51335   3   3-8     
51346.7 8   3-8     
51369.95    2   2-5     
51369.95    3   3-8     
51392.1 7   4-7     
51420   7   4-7     
51415   3   3-8     
51418   8   3-8     
51411.15    3   3-8     
51448.2 2   2-5     
51439.3 6   1-6     
51430   6   1-6     
51430   8   3-8     
51439.65    6   1-6     
51430.1 8   3-8     
51443.55    8   3-8     
51470   8   3-8     
51485   8   3-8     
51487.3 8   3-8     
51475   3   3-8     
51485   7   4-7     
51519.05    8   3-8     
51520.55    8   3-8     
51507.5 3   3-8     
51492.9 3   3-8     
51484.15    3   3-8     
51495.5 8   3-8     
51479   3   3-8     
51480   8   3-8     
51470   3   3-8     
51460.85    6   1-6     
51480   8   3-8     
51488.15    1   1-6     
51470.2 5   2-5     
51453   3   3-8     
51455.05    7   4-7     
51455   3   3-8     
51450   3   3-8     
51440   6   1-6     
51440   1   1-6     
51437.75    6   1-6     
51454.6 1   1-6     
51425   3   3-8     
51420   3   3-8     
51427.9 1   1-6     
51428.95    3   3-8     
51452.65    8   3-8     
51440.9 3   3-8     
51450.1 8   3-8     
51464.8 8   3-8     
51450   3   3-8     
51430   5   2-5     
51442   8   3-8     
51450   8   3-8     
51434.45    3   3-8     
51421   3   3-8     
51404   3   3-8     
51397.1 3   3-8     
51390.15    3   3-8     
51397.25    8   3-8     
51381.55    3   3-8     
51394.95    1   1-6     
51395   8   3-8     
51380   6   1-6     
51390.7 7   4-7     
51386.55    3   3-8     
51394.95    8   3-8     
51391.65    6   1-6     
51399.2 2   2-5     
51399               
51390   3   3-8     
51390   1   1-6     
51355.05    5   2-5     
51369.95    1   1-6     
51370   1   1-6     
51359   4   4-7 51329.4 51529.9
51388.1 8   3-8     
51391.9 8   3-8     
51391.75    3   3-8     
51394.8 8   3-8     
51399.9 7   4-7 51359   51399.9
51421   8   3-8     
51440.35    8   3-8     
51425   6   1-6     
51443.9 8   3-8     
51445.4 8   3-8     
51440.9 3   3-8     
51426   4   4-7 51399.9 51445.4
51424.9 3   3-8     
51435               
51449.5 3   3-8     
51450   6   1-6     
51449   6   1-6     
51465.95    8   3-8     
51436.6 3   3-8     
51440.55    8   3-8     
51425   4   4-7     
51401.75    3   3-8     
51409.25    8   3-8     
51460   8   3-8     
51470   8   3-8     
51483.65    8   3-8     
51469.2 6   1-6     
51480   8   3-8     
51461.65    6   1-6     
51474   8   3-8     
51484.95    8   3-8     
51478.4 4   4-7     
51478.05    3   3-8     
51486.2 8   3-8     
51462.1 3   3-8     
51470.15    1   1-6     
51470   6   1-6     
51485   8   3-8     
51548   8   3-8     
51545   3   3-8     
51536.3 1   1-6     
51571.3 8   3-8     
51560   3   3-8     
51559   6   1-6     
51620   8   3-8     
51639.6 8   3-8     
51644   8   3-8     
51654.4 8   3-8     
51654.45    8   3-8     
51630.7 3   3-8     
51632.4 8   3-8     
51640   8   3-8     
51644.7 8   3-8     
51637.95    6   1-6     
51610.65    3   3-8     
51595   3   3-8     
51576   6   1-6     
51556.7 3   3-8     
51551.15    3   3-8     
51584.95    1   1-6     
51577.05    1   1-6     
51554.25    5   2-5     
51569   1   1-6     
51543.85    3   3-8     
51560   8   3-8     
51564.75    8   3-8     
51560   3   3-8     
51574   8   3-8     
51570   3   3-8     
51590   8   3-8     
51573.2 3   3-8     
51573.4 1   1-6     
51538.35    3   3-8     
51550   8   3-8     
51549.9 6   1-6     
51549.4 6   1-6     
51542.75    3   3-8     
51535   6   1-6     
51530   3   3-8     
51520   3   3-8     
51540   1   1-6     
51565   2   2-5     
51542.2 3   3-8     
51547.35    1   1-6     
51545.4 3   3-8     
51534.05    3   3-8     
51530   3   3-8     
51534   1   1-6     
51525   3   3-8     
51490   3   3-8     
51470.6 3   3-8     
51464.85    3   3-8     
51435   3   3-8     
51451   8   3-8     
51456.35    7   4-7 51401.75    51654.45
51464   8   3-8     
51460   3   3-8     
51473.15    8   3-8     
51471.75    3   3-8     
51440.2 5   2-5     
51426   3   3-8     
51429.95    1   1-6     
51435   2   2-5     
51438.65    1   1-6     
51412.6 3   3-8     
51426.25    1   1-6     
51366   3   3-8     
51395   2   2-5     
51410   8   3-8     
51419.1 8   3-8     
51408.85    6   1-6     
51400   3   3-8     
51398.8 3   3-8     
51402.5 1   1-6     
51413.5 8   3-8     
51416.35    1   1-6     
51422.4 8   3-8     
51445   8   3-8     
51440   3   3-8     
51428.4 4   4-7 51366   51473.15
51437.15    1   1-6     
51430.75    3   3-8     
51440   8   3-8     
51430.5 6   1-6     
51442.05    7   4-7 51428.4 51442.05
51436.25    8   3-8     
51474.95    8   3-8     
51478.25    1   1-6     
51481.35    8   3-8     
51470.05    5   2-5     
51469.95    3   3-8     
51465.7 3   3-8     
51470.7 8   3-8     
51486.75    1   1-6     
51493.65        Last    51436.25    51493.65

我正在使用以下代码,但是此代码在最后 4 或 7 直到最后一行之后重复相同的 min 和 max 值。

# Initialize variables
last_index = None
last_seen = None

# Initialize new columns
pivot_table_reset['4-7'] = None
pivot_table_reset['min'] = None
pivot_table_reset['max'] = None

# Iterate through the DataFrame
for i, row in pivot_table_reset.iterrows():
    if row['functions'] in [4, 7]:
        # Update the '4-7' column with the current Price
        pivot_table_reset.at[i, '4-7'] = row['Price']

        # Calculate min and max from the last seen function (4 or 7) to the current row
        if last_index is not None:
            min_price = pivot_table_reset.loc[last_index:i, 'Price'].min()
            max_price = pivot_table_reset.loc[last_index:i, 'Price'].max()
        else:
            min_price = row['Price']
            max_price = row['Price']

        # Update the min and max columns
        pivot_table_reset.at[i, 'min'] = min_price
        pivot_table_reset.at[i, 'max'] = max_price

        # Update the last seen function and index
        last_index = i
        last_seen = row['functions']

# Check if there are any remaining rows to handle (e.g., last row edge case)
if last_index is not None:
    pivot_table_reset.loc[last_index:, 'min'] = pivot_table_reset.loc[last_index:, 'Price'].min()
    pivot_table_reset.loc[last_index:, 'max'] = pivot_table_reset.loc[last_index:, 'Price'].max()
python pandas iteration max min
1个回答
0
投票

假设您想要排除之前的 4-7 的最小/最大值,这是一个简单的

groupby.transform
:

group = df.loc[::-1, 'cat'].eq('4-7').cumsum()[::-1]
t = df.groupby(group)['Price'].transform
df['min'] = t('min')
df['max'] = t('max')

输出(第 30-50 行):

       Price functions  cat       min       max
30  50925.75         3  3-8  50892.30  51272.85
31  50892.30         4  4-7  50892.30  51272.85
32  50880.00         3  3-8  50876.45  50941.95
33  50876.45         3  3-8  50876.45  50941.95
34  50901.00         8  3-8  50876.45  50941.95
35  50910.00         1  1-6  50876.45  50941.95
36  50941.95         7  4-7  50876.45  50941.95
37  50919.85         3  3-8  50898.40  51030.00
38  50912.45         3  3-8  50898.40  51030.00
39  50898.40         6  1-6  50898.40  51030.00
40  50930.00         1  1-6  50898.40  51030.00
41  50958.00         2  2-5  50898.40  51030.00
42  50986.15         1  1-6  50898.40  51030.00
43  50990.00         8  3-8  50898.40  51030.00
44  50994.00         8  3-8  50898.40  51030.00
45  51029.00         8  3-8  50898.40  51030.00
46  51030.00         8  3-8  50898.40  51030.00
47  51015.65         5  2-5  50898.40  51030.00
48  50997.15         3  3-8  50898.40  51030.00
49  50970.00         4  4-7  50898.40  51030.00
50  51002.55         1  1-6  51002.55  51511.40

如果您想包含两个边界,则使用

groupby.agg
进行聚合,计算最小值/最大值/第一个,并使用下一组的第一个值修正最小值/最大值:

m = df['cat'].eq('4-7')
group = m.cumsum()
g = df.groupby(group)['Price'].agg
f = g('first').shift(-1)
df['min'] = group.map(np.fmin(g('min'), f))
df['max'] = group.map(np.fmax(g('max'), f))

输出:

       Price functions  cat       min       max
30  50925.75         3  3-8  50892.30  51272.85
31  50892.30         4  4-7  50876.45  50941.95
32  50880.00         3  3-8  50876.45  50941.95
33  50876.45         3  3-8  50876.45  50941.95
34  50901.00         8  3-8  50876.45  50941.95
35  50910.00         1  1-6  50876.45  50941.95
36  50941.95         7  4-7  50898.40  51030.00
37  50919.85         3  3-8  50898.40  51030.00
38  50912.45         3  3-8  50898.40  51030.00
39  50898.40         6  1-6  50898.40  51030.00
40  50930.00         1  1-6  50898.40  51030.00
41  50958.00         2  2-5  50898.40  51030.00
42  50986.15         1  1-6  50898.40  51030.00
43  50990.00         8  3-8  50898.40  51030.00
44  50994.00         8  3-8  50898.40  51030.00
45  51029.00         8  3-8  50898.40  51030.00
46  51030.00         8  3-8  50898.40  51030.00
47  51015.65         5  2-5  50898.40  51030.00
48  50997.15         3  3-8  50898.40  51030.00
49  50970.00         4  4-7  50970.00  51511.40
50  51002.55         1  1-6  50970.00  51511.40
© www.soinside.com 2019 - 2024. All rights reserved.