我正在制作一个地块,其中对植物的生长进行地上植物测量和地下测量。我想显示 y 轴上从 0 开始向上的地上测量值和 y 轴上从 0 开始向下的地下测量值(我仍然希望其值为正值)。我有三个治疗组和两个样本组,我希望将治疗显示在 x 轴上。我几乎可以通过下面的代码到达那里。
但是-
我希望每个样本的条形在 x 轴上相交,目前所有条形都被躲避。当我从
position = position_dodge()
中移除 geom_bar()
时,样本条堆叠起来。我该怎么做才能让每个样本条在中间相遇。当我改变 ggplot(aes(fill = Sample)
时,我得到了我想要的图表结构,但我无法让条形变为正确的颜色。
下面的 0 y 轴标签 - 有没有办法可以屏蔽这些标签,以便即使底层数字为负数,我也可以在轴上使用正数?我尝试用
labels = scales::label_number(accuracy = 1)
代替 labels = function(y) ifelse(y < 0, abs(y), y)
来做到这一点,它可以使 0 两边的数字均为正数,但是它们会变成非常长的小数。我无法找到一种方法来使用这两种方法来进行简单编号并使以下 0 数字为正数。
这是到目前为止的代码:
# Load libraries
library(ggplot2)
library(dplyr)
library(scales)
# Sample data with 2 samples and 3 treatments
data <- data.frame(
Sample = rep(c("Sample1", "Sample2"), each = 3),
Treatment = rep(c("Treatment1", "Treatment2", "Treatment3"), times = 2),
ShootLength = c(10, 12, 11, 9, 13, 14),
RootLength = c(7, 6, 8, 6, 7, 9)
)
# Add random variation to simulate repeated measurements
set.seed(123)
data_long <- data.frame(
Sample = rep(data$Sample, each = 6),
Treatment = rep(data$Treatment, each = 6),
Type = rep(c("ShootLength", "RootLength"), times = 18),
Length = c(
rnorm(18, mean = rep(data$ShootLength, each = 3), sd = 1),
rnorm(18, mean = rep(data$RootLength, each = 3), sd = 1)
)
)
# Summarize data for mean and standard deviation
data_summary <- data_long %>%
group_by(Sample, Treatment, Type) %>%
summarise(
Mean = mean(Length),
SD = sd(Length),
.groups = "drop"
)
# Mutate so RootLength is negative to appear below x axis
data_summary <- data_summary %>%
mutate(
StackedOffset = ifelse(Type == "RootLength", -Mean, Mean), # Adjust for below-ground
SD_Pos = SD, # Standard deviation remains positive
FillGroup = paste(Sample, Type, sep = "_") # New variable for combined colors
)
# Plot
ggplot(data_summary, aes(x = Treatment, y = StackedOffset, fill = FillGroup)) +
geom_bar(stat = "identity", position = position_dodge(), width = 0.5, color = "black") +
geom_errorbar(
aes(
ymin = StackedOffset - SD_Pos,
ymax = StackedOffset + SD_Pos
),
position = position_dodge(0.5), width = 0.2, color = "black"
) +
scale_y_continuous(
name = "Shoot Length (Above Ground)",
breaks = seq(-max(data_summary$Mean + data_summary$SD), max(data_summary$Mean + data_summary$SD), by = 1),
labels = scales::label_number(accuracy = 1),
sec.axis = sec_axis(~ ., name = "Root Length (Below Ground)", labels = function(y) abs(y))
) +
scale_fill_manual(
values = c(
"Sample1_ShootLength" = "red", # Sample1 above ground
"Sample1_RootLength" = "blue", # Sample1 below ground
"Sample2_ShootLength" = "darkred", # Sample2 above ground
"Sample2_RootLength" = "darkblue" # Sample2 below ground
)
) +
theme_minimal() +
theme(
axis.text.x = element_text(angle = 45, hjust = 1),
panel.grid.major.y = element_line(color = "gray", size = 0.5),
panel.grid.major.x = element_blank()
) +
labs(
x = "Treatment",
y = "Length",
fill = "Sample & Type",
title = "Shoot and Root Lengths by Treatment and Sample"
)
1人份 我会完全删除position_dodge()以允许条形堆叠。然后创建一个新的 x 轴定位系统,将每个样本的测量结果直接放在彼此的顶部。更新 x 轴标签以显示处理和样品信息。我保留了条形宽度,虽然我认为通常使条形比胡须更宽,但这是你的选择。
2人份 使用
custom custom_breaks
和 custom_labels
函数。
# Load libraries
library(ggplot2)
library(dplyr)
library(scales)
# Sample data with 2 samples and 3 treatments
data <- data.frame(
Sample = rep(c("Sample1", "Sample2"), each = 3),
Treatment = rep(c("Treatment1", "Treatment2", "Treatment3"), times = 2),
ShootLength = c(10, 12, 11, 9, 13, 14),
RootLength = c(7, 6, 8, 6, 7, 9)
)
# Add random variation to simulate repeated measurements
set.seed(123)
data_long <- data.frame(
Sample = rep(data$Sample, each = 6),
Treatment = rep(data$Treatment, each = 6),
Type = rep(c("ShootLength", "RootLength"), times = 18),
Length = c(
rnorm(18, mean = rep(data$ShootLength, each = 3), sd = 1),
rnorm(18, mean = rep(data$RootLength, each = 3), sd = 1)
)
)
# Summarize data for mean and standard deviation
data_summary <- data_long %>%
group_by(Sample, Treatment, Type) %>%
summarise(
Mean = mean(Length),
SD = sd(Length),
.groups = "drop"
)
# Mutate so RootLength is negative to appear below x axis
data_summary <- data_summary %>%
mutate(
StackedOffset = ifelse(Type == "RootLength", -Mean, Mean),
SD_Pos = SD,
FillGroup = paste(Sample, Type, sep = "_"),
# Create a new x-axis position for each sample
x_position = paste(Treatment, Sample)
)
# Create custom breaks and labels function for y-axis
custom_breaks <- function(x) {
max_value <- max(abs(ceiling(x)))
seq(-max_value, max_value, by = 1) # adjust spacing of labels here :)
}
custom_labels <- function(x) {
sprintf("%.f", abs(x)) # adjust decimal numbers more: "%.1f" or "%.2f"
}
# Create new x-axis positions
x_positions <- unique(data_summary$x_position)
x_numeric <- seq_along(x_positions)
names(x_numeric) <- x_positions
data_summary$x_num <- x_numeric[data_summary$x_position]
# Plot
ggplot(data_summary, aes(x = x_num, y = StackedOffset, fill = FillGroup)) +
geom_bar(
stat = "identity",
width = 0.2,
color = "black"
) +
geom_errorbar(
aes(
ymin = StackedOffset - SD_Pos,
ymax = StackedOffset + SD_Pos
),
width = 0.2,
color = "black"
) +
scale_x_continuous(
breaks = x_numeric,
labels = c("Treatment1\nSample1", "Treatment1\nSample2",
"Treatment2\nSample1", "Treatment2\nSample2",
"Treatment3\nSample1", "Treatment3\nSample2")
) +
scale_y_continuous(
name = "Shoot Length (Above Ground)",
breaks = custom_breaks,
labels = custom_labels,
sec.axis = sec_axis(
~ .,
name = "Root Length (Below Ground)",
breaks = custom_breaks,
labels = custom_labels
)
) +
scale_fill_manual(
values = c(
"Sample1_ShootLength" = "red",
"Sample1_RootLength" = "blue",
"Sample2_ShootLength" = "darkred",
"Sample2_RootLength" = "darkblue"
)
) +
theme_minimal() +
theme(
axis.text.x = element_text(angle = 45, hjust = 1),
panel.grid.major.y = element_line(color = "gray", size = 0.5),
panel.grid.major.x = element_blank()
) +
labs(
x = "Treatment and Sample",
y = "Length",
fill = "Sample & Type",
title = "Shoot and Root Lengths by Treatment and Sample"
)