这是我的数据框,其中包含间隔号(类)。
df = pd.DataFrame({'Class': [1,2,3,4,5,6,7,8,9,10,11],
'Class Interval': ['16.25-18.75', '18.75-21.25', '21.25-23.75',
'23.75-26.25', '26.25-28.75', '28.75-31.25',
'31.25-33.75', '33.75-36.25', '36.25-38.75',
'38.75-41.25', '41.25-43.75'],
'𝑓𝑖' : [2,7,7,14,17,24,11,11,3,3,1],
'Cumulative 𝑓𝑖': [2,9,16,30,47,71,82,93,96,99,100],
'𝑓𝑖/n' : [.02,.07,.07,.14,.17,.24,.11,.11,.03,.03,.01],
'Cumulative 𝑓𝑖/n' : [.02, .09,.16,.30,.47,.71,.82,.93,.96,.99,1.00]})
df
Class Class Interval 𝑓𝑖 Cumulative 𝑓𝑖 𝑓𝑖/𝑛 Cumulative 𝑓𝑖/𝑛
0 1 16.25-18.75 2 2 0.02 0.02
1 2 18.75-21.25 7 9 0.07 0.09
2 3 21.25-23.75 7 16 0.07 0.16
3 4 23.75-26.25 14 30 0.14 0.30
4 5 26.25-28.75 17 47 0.17 0.47
5 6 28.75-31.25 24 71 0.24 0.71
6 7 31.25-33.75 11 82 0.11 0.82
7 8 33.75-36.25 11 93 0.11 0.93
8 9 36.25-38.75 3 96 0.03 0.96
9 10 38.75-41.25 3 99 0.03 0.99
10 11 41.25-43.75 1 100 0.01 1.00
问题:如何使用python计算此数据帧的分组中位数?
可以手动完成,结果是29.06。
我尝试过'median_grouped':
# importing median_grouped from the statistics module
from statistics import median_grouped
# printing median_grouped for the set
print("Grouped Median is %s" %(median_grouped(df['Class Interval'])))
但是我得到了错误:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-26-491000133032> in <module>
4
5 # printing median_grouped for the set
----> 6 print("Grouped Median is %s" %(median_grouped(df['Class Interval'])))
~\Anaconda3\ANACONDA\lib\statistics.py in median_grouped(data, interval)
463 for obj in (x, interval):
464 if isinstance(obj, (str, bytes)):
--> 465 raise TypeError('expected number but got %r' % obj)
466 try:
467 L = x - interval/2 # The lower limit of the median interval.
TypeError: expected number but got '28.75-31.25'
比起我尝试制作两列(一列的下限和一列的上限),但是他只给了我下限(28.75)/上限中位数(31.25)。我也只尝试了下限,但是当然比他给我的还低了28.75。
我没有在间隔内的值,所以我无法重新创建要使用pd.cut剪切的值列表,并像这样正确地尝试(我不想猜测),但是我也尝试了手动操作使类间隔成为垃圾箱(例如16.25-18.25大于(16.25,18.25],但后来我得到了错误消息:TypeError:无法排序的类型:Interval() 是否有可能用间隔数字而不是字符串来使列能够使用Python自动计算分组的Median?
我首先将您的时间间隔转换为lower bound
(lb)和upper bound
(ub)的两个单独的列
df = (df.join(df['Class Interval'].str.split('-', expand=True)
.apply(pd.to_numeric)
.rename(columns={0: 'lb', 1: 'ub'}))
.drop('Class Interval', 1))
然后,看起来您可以直接写出公式
gmedian = df.loc[m, 'lb'] + ((df['𝑓𝑖'].sum()/2 - df.loc[m - 1, 'Cumulative 𝑓𝑖'])/(df.loc[m, '𝑓𝑖']))*(df['ub'] - df['lb']).loc[m]
输出
29.0625
您可以重新创建包含相同统计信息的人工数据点的列表,并在其中运行mean_grouped
:
# Obtaining lower, upper and middle interval value
df['lower'] = df['Class Interval'].str.slice(0,5).astype(float)
df['upper'] = df['Class Interval'].str.slice(6,11).astype(float)
df['middle'] = (df['lower'] + df['upper'] ) / 2
# Generating an artificial list of values with that statistical info
artificial_data_list = []
for index, row in df.iterrows():
artificial_data_list.append([row['middle']]*row['𝑓𝑖'])
flat_list = [item for sublist in artificial_data_list for item in sublist]
# The right median
median_grouped(flat_list,interval=2.5)
# => 29.0625