我需要计算 R 中各组的移动加权平均值。
下面是我的代码示例:
df %>%
arrange(Type, Year)
group_by(Type) %>%
mutate(
"weighted.rolling.mean" = rollapplyr(
df %>% select(Value, Area),
width = 50,
function(z){
return(
weighted_mean = weighted.mean(z[,"Value"],z[,"Area"], partial = TRUE)
)
},
by.column = FALSE,
align = "right",
fill=NA
)
)
没有
group_by
参数,代码可以正常工作。
如果我在
group_by
函数中使用 rollapplyr
,则会收到以下错误:
Error in `mutate()`:
ℹ In argument: `weighted.rolling.mean = rollapplyr(...)`.
ℹ In group 1: `Type = "Etageadskillelse"`.
Caused by error in `x * w`:
! non-numeric argument to binary operator
Backtrace:
1. ... %>% ...
9. zoo::rollapplyr(...)
11. zoo:::rollapply.default(..., align = align)
14. zoo:::rollapply.zoo(zoo(data), ...)
15. base::mapply(...)
16. zoo (local) `<fn>`(dots[[1L]][[50L]], dots[[2L]][[50L]], data = `<chr[,4]>`)
17. FUN(data[posns, ], ...)
19. stats:::weighted.mean.default(z[, "Value"], z[, "Area"], partial = TRUE)
提前非常感谢!
更新
这是我的数据集的示例:
structure(list(Value = c(0.55, 0.14, 0.760367571281347, 0.25,
0.4, 0.12, 0.4, 0.13, 0.14, 0.344161801501251, 1.06, 0.58, 0.45,
0.68, 0.36, 0.19, 0.25, 0.68, 0.08, 0.14, 1.74386666666667, 0.3,
0.350285714285714, 0.07, 0.14), Area = c(3.5, 11.2, 87.33, 133,
16.67, 112.3, 44, 281, 121, 119.9, 77, 82, 33.48, 102.1, 98.07,
121.53, 54, 2.15, 15.48, 136, 30, 31.5, 70, 144.15, 100), Type = c("Ydervæg",
"Kvist", "Ydervæg", "Ydervæg", "Ydervæg", "Loft", "Skunk",
"Loft", "Loft", "Ydervæg", "Ydervæg", "Etageadskillelse", "Terrændæk",
"Ydervæg", "Ydervæg", "Loft", "Loft", "Ydervæg", "Terrændæk",
"Loft", "Etageadskillelse", "Terrændæk", "Skunk", "Terrændæk",
"Loft"), Year = c(1965L, 2011L, 1966L, 1929L, 1890L, 1937L, 1926L,
1846L, 1965L, 1920L, 1963L, 1936L, 1947L, 1920L, 1973L, 1967L,
1915L, 1814L, 1964L, 2005L, 1950L, 1933L, 1929L, 1874L, 1964L
)), row.names = c(NA, -25L), class = c("tbl_df", "tbl", "data.frame"
))
使用
pick
而不是select
,partial
放错了位置,确保传递给FUN
的参数是一个矩阵,使用末尾带有r的rollapplyr
以避免需要align = "right"
df %>%
arrange(Type, Year) %>%
group_by(Type) %>%
mutate("weighted.rolling.mean" = rollapplyr(
pick(Value, Area),
width = 3,
FUN = \(z, m = matrix(z, ncol = 2)) weighted.mean(m[,1], m[,2]),
by.column = FALSE,
fill=NA,
partial = TRUE
)
)
给予
# A tibble: 25 × 5
# Groups: Type [6]
Value Area Type Year weighted.rolling.mean
<dbl> <dbl> <chr> <int> <dbl>
1 0.58 82 Etageadskillelse 1936 0.58
2 1.74 30 Etageadskillelse 1950 0.892
3 0.14 11.2 Kvist 2011 0.14
4 0.13 281 Loft 1846 0.13
5 0.25 54 Loft 1915 0.149
6 0.12 112. Loft 1937 0.142
7 0.14 100 Loft 1964 0.154
8 0.14 121 Loft 1965 0.133
9 0.19 122. Loft 1967 0.158
10 0.14 136 Loft 2005 0.156
# ℹ 15 more rows
# ℹ Use `print(n = ...)` to see more rows