将此标记用于与dplyr包中的函数相关的问题,例如group_by,summarize,filter和select。
library(magrittr) generates_data_graph <- function(data, positive = FALSE) { data_graph <- data %>% {if (positive) slice_max(order_by = value1, n = 5) %>% mutate(chave1 = fct_reorder(.f = key1, .x = value2, .desc = TRUE)) else slice_min(order_by = value1, n = 5) %>% mutate(chave1 = fct_reorder(.f = key1, .x = value2, .desc = FALSE)) } } <- function(data, positive =
使用Collapse Package提取FGROUP_BY的分组变量
我想为倒塌包创建一个自定义功能,在其中我提供了无引用的分组变量这样的函数: 图书馆(崩溃) 图书馆(整洁) fgroup_by_no_entries<- function(df, ...) { ...
在汇总字符矢量时签名NAS 我有这个非常简单的数据集。 id
<- c(12, 13, 26, 45, 55, 66) group <- c("one", "one", "two", "two", "three", "three") txt <-...
我已经使用此代码从目录导入所有CSV文件<- list.files(pattern = "\\.csv$") %>
我想将列转换为一个因子,并基于其他列订购级别。如果我使用级别的原始对象,例如下面,输入对象(IRIS)为
df <- data.frame(nr = c(rep("n01", 10), rep("n03", 13), rep("n04", 8), rep("n06", 14), rep("n08", 13), rep("n12", 14), rep("n14", 10)), yr = c(2012:2021, 2010:2022, 2013:2020, 2010:2023, 2011:2023, 2009:2022, 2011:2020), sp = c(rep(NA, 12), "tr", rep(NA, 27), "tr", rep(NA, 21), "tr", rep(NA, 19))) <- data.frame(nr = c(rep("n01", 10), rep("n03", 13), rep("n04", 8), rep("n06",...
python中r / dplyr的瞥见功能(用于熊猫数据范围的函数)的等效函数?
I发现瞥见功能在R/DPLYR中非常有用。但是,作为一个习惯R的人,现在正在与Python合作,我还没有发现对熊猫数据范围有用的东西。 在Python中,我尝试过...
贝洛(Below)是一个可复制的示例,其中具有测试数据框: dat<- structure(list(A = c(1.3, 1.5, 1.6, 1.2, 1.1, 1.2), B = c(0.25, 0.21, 0.21, 0.15, 0.26, 0.17)),
有一种方法可以将滤波器参数列表传递给`dplyr :: filter`?
我想在多个列中的值上过滤一个数据框,而无需硬编码dplyr :: filter call中的列和值。本质上,我想避免这种情况: df_in<- data.
i想更改我的数据框架的对角线元素:特别是对于每列,我想总结整列的值,然后将该数字添加到列的对角线输入中,然后重复对角线的过程每列的入口。 我试图无济于事
<- data.frame(nr = c(rep("n01", 10), rep("n03", 13), rep("n04", 8), rep("n06",...
df1 <- read.table(text = "entity_id state last_changed DT.diff sensor.kincony02_temperature03 20.4 '2025-02-04 23:00:15' 15.188 sensor.kincony02_temperature03 20.3 '2025-02-04 23:08:15' 479.849 sensor.kincony02_temperature03 20.2 '2025-02-04 23:10:15' 120.115 sensor.kincony02_temperature03 20.3 '2025-02-04 23:15:15' 300.136 sensor.kincony02_temperature03 20.4 '2025-02-04 23:18:15' 180.020 sensor.kincony02_temperature03 20.5 '2025-02-04 23:21:15' 180.020 sensor.kincony02_temperature03 20.6 '2025-02-04 23:22:15' 59.904 sensor.kincony02_temperature03 20.7 '2025-02-04 23:23:15' 59.904 sensor.kincony02_temperature03 20.8 '2025-02-04 23:25:15' 120.115 sensor.kincony02_temperature03 20.9 '2025-02-04 23:27:15' 119.809 sensor.kincony02_temperature03 21.0 '2025-02-04 23:30:15' 179.979 sensor.kincony02_temperature03 21.1 '2025-02-04 23:31:15' 60.252 sensor.kincony02_temperature03 21.2 '2025-02-04 23:35:15' 239.921 sensor.kincony02_temperature03 21.3 '2025-02-04 23:46:15' 659.865 sensor.kincony02_temperature03 21.2 '2025-02-04 23:47:15' 60.008 sensor.kincony02_temperature03 21.1 '2025-02-04 23:51:15' 240.025 sensor.kincony02_temperature03 21.2 '2025-02-04 23:53:15' 120.218 sensor.kincony02_temperature03 21.1 '2025-02-04 23:54:15' 59.903 sensor.kincony02_temperature03 21.0 '2025-02-05 00:02:15' 479.803 sensor.kincony02_temperature03 20.9 '2025-02-05 00:06:15' 239.999 sensor.kincony02_temperature03 20.8 '2025-02-05 00:11:15' 300.007 sensor.kincony02_temperature03 20.7 '2025-02-05 00:13:15' 119.997 sensor.kincony02_temperature03 20.6 '2025-02-05 00:14:15' 60.008 sensor.kincony02_temperature03 20.5 '2025-02-05 00:15:15' 60.002 sensor.kincony02_temperature03 20.4 '2025-02-05 00:17:15' 119.999 sensor.kincony02_temperature03 20.3 '2025-02-05 00:19:15' 119.996 sensor.kincony02_temperature03 20.2 '2025-02-05 00:20:15' 59.998 sensor.kincony02_temperature03 20.1 '2025-02-05 00:24:15' 240.009 sensor.kincony02_temperature03 20.0 '2025-02-05 00:27:15' 179.997", header = TRUE) <- read.table(text = "entity_id state last_changed DT.diff sensor.kincony02_temperature03 20.4 '2025-02-04 23:00:15' 15.188 sensor.
这是我的代码 图书馆(整洁) 图书馆(palmerpenguins) 企鹅%>% 突变(跨(其中(is.double),〜替换_na(.x,均值(.x,na.rm = true))),),)),),) 跨越(is.fac ...