如何使用groupby计算vwap(成交量加权平均价格)并应用?

问题描述 投票:0回答:3

我已经阅读了多篇与我的问题类似的帖子,但我仍然无法弄清楚。我有一个 pandas df,如下所示(多天):

Out[1]: 
                     price  quantity
time                                
2016-06-08 09:00:22  32.30    1960.0
2016-06-08 09:00:22  32.30     142.0
2016-06-08 09:00:22  32.30    3857.0
2016-06-08 09:00:22  32.30    1000.0
2016-06-08 09:00:22  32.35     991.0
2016-06-08 09:00:22  32.30     447.0
...

要计算我可以做的 vwap:

df['vwap'] = (np.cumsum(df.quantity * df.price) / np.cumsum(df.quantity))

但是,我想每天重新开始(groupby),但我不知道如何让它与(lambda?)函数一起工作。

df['vwap_day'] = df.groupby(df.index.date)['vwap'].apply(lambda ...

速度至关重要。将不胜感激任何帮助:)

python pandas lambda pandas-groupby
3个回答
29
投票

选项0
普通香草方法

def vwap(df):
    q = df.quantity.values
    p = df.price.values
    return df.assign(vwap=(p * q).cumsum() / q.cumsum())

df = df.groupby(df.index.date, group_keys=False).apply(vwap)
df

                     price  quantity       vwap
time                                           
2016-06-08 09:00:22  32.30    1960.0  32.300000
2016-06-08 09:00:22  32.30     142.0  32.300000
2016-06-08 09:00:22  32.30    3857.0  32.300000
2016-06-08 09:00:22  32.30    1000.0  32.300000
2016-06-08 09:00:22  32.35     991.0  32.306233
2016-06-08 09:00:22  32.30     447.0  32.305901

选项1
加一点

eval

df = df.assign(
    vwap=df.eval(
        'wgtd = price * quantity', inplace=False
    ).groupby(df.index.date).cumsum().eval('wgtd / quantity')
)
df

                     price  quantity       vwap
time                                           
2016-06-08 09:00:22  32.30    1960.0  32.300000
2016-06-08 09:00:22  32.30     142.0  32.300000
2016-06-08 09:00:22  32.30    3857.0  32.300000
2016-06-08 09:00:22  32.30    1000.0  32.300000
2016-06-08 09:00:22  32.35     991.0  32.306233
2016-06-08 09:00:22  32.30     447.0  32.305901

9
投票

我之前也使用过这种方法,但如果你想限制窗口期,它的效果不太准确。相反,我发现 TA python 库运行得非常好: https://technical-analysis-library-in-python.readthedocs.io/en/latest/index.html

from ta.volume import VolumeWeightedAveragePrice

# ...
def vwap(dataframe, label='vwap', window=3, fillna=True):
        dataframe[label] = VolumeWeightedAveragePrice(high=dataframe['high'], low=dataframe['low'], close=dataframe["close"], volume=dataframe['volume'], window=window, fillna=fillna).volume_weighted_average_price()
        return dataframe

0
投票

我使用 HLC3 方法进行 vwap。这个公式对我有用。 这是升级到HLC3而不是close,这是这个平台上有人分享的。

import yfinance as yf
data = yf.download('AAPL', start='2020-01-01', end='2024-08-15',interval = '1d')

def vwap(df):
    # Calculate HLC3 (average of High, Low, and Close)
    hlc3 = (df['High'] + df['Low'] + df['Adj Close']) / 3
    
    q = df['Volume'].values   # Use 'Volume' column for quantity
    p = hlc3.values  # Use HLC3 for price
    
    # VWAP calculation using HLC3
    vwap = (p * q).cumsum() / q.cumsum()
    
    # Assign the calculated VWAP as a new column
    return df.assign(VWAP=vwap)

# Apply the VWAP calculation to the data
data = data.groupby(data.index.date, group_keys=False).apply(vwap)

data.head()
© www.soinside.com 2019 - 2024. All rights reserved.