如何使用python / numpy计算百分位数?

问题描述 投票:172回答:10

有没有一种方便的方法来计算序列或单维numpy数组的百分位数?

我正在寻找类似于Excel百分位函数的东西。

我查看了NumPy的统计参考,但是找不到这个。我能找到的只是中位数(第50百分位数),但不是更具体的东西。

python numpy statistics numpy-ndarray percentile
10个回答
234
投票

您可能对SciPy Stats包感兴趣。它有the percentile function你追求和许多其他统计的好东西。

percentile()is available numpy也是如此。

import numpy as np
a = np.array([1,2,3,4,5])
p = np.percentile(a, 50) # return 50th percentile, e.g median.
print p
3.0

This ticket让我相信他们不会很快将percentile()整合到numpy中。


0
投票

对于系列:用于描述函数

假设你有以下列sales和id的df。你想计算销售百分位数然后就像这样工作,

df['sales'].describe(percentiles = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])

0.0: .0: minimum
1: maximum 
0.1 : 10th percentile and so on

62
投票

顺便说一句,有一个a pure-Python implementation of percentile function,以防一个人不想依赖scipy。该功能复制如下:

## {{{ http://code.activestate.com/recipes/511478/ (r1)
import math
import functools

def percentile(N, percent, key=lambda x:x):
    """
    Find the percentile of a list of values.

    @parameter N - is a list of values. Note N MUST BE already sorted.
    @parameter percent - a float value from 0.0 to 1.0.
    @parameter key - optional key function to compute value from each element of N.

    @return - the percentile of the values
    """
    if not N:
        return None
    k = (len(N)-1) * percent
    f = math.floor(k)
    c = math.ceil(k)
    if f == c:
        return key(N[int(k)])
    d0 = key(N[int(f)]) * (c-k)
    d1 = key(N[int(c)]) * (k-f)
    return d0+d1

# median is 50th percentile.
median = functools.partial(percentile, percent=0.5)
## end of http://code.activestate.com/recipes/511478/ }}}

25
投票
import numpy as np
a = [154, 400, 1124, 82, 94, 108]
print np.percentile(a,95) # gives the 95th percentile

11
投票

这里是如何在没有numpy的情况下完成它,只使用python来计算百分位数。

import math

def percentile(data, percentile):
    size = len(data)
    return sorted(data)[int(math.ceil((size * percentile) / 100)) - 1]

p5 = percentile(mylist, 5)
p25 = percentile(mylist, 25)
p50 = percentile(mylist, 50)
p75 = percentile(mylist, 75)
p95 = percentile(mylist, 95)

10
投票

我通常看到的百分位数的定义结果是所提供的列表中的值,其中P%的值被找到...这意味着结果必须来自集合,而不是集合元素之间的插值。为此,您可以使用更简单的功能。

def percentile(N, P):
    """
    Find the percentile of a list of values

    @parameter N - A list of values.  N must be sorted.
    @parameter P - A float value from 0.0 to 1.0

    @return - The percentile of the values.
    """
    n = int(round(P * len(N) + 0.5))
    return N[n-1]

# A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
# B = (15, 20, 35, 40, 50)
#
# print percentile(A, P=0.3)
# 4
# print percentile(A, P=0.8)
# 9
# print percentile(B, P=0.3)
# 20
# print percentile(B, P=0.8)
# 50

如果您希望从提供的列表中获取值,或者在其中找到P%的值,则使用以下简单修改:

def percentile(N, P):
    n = int(round(P * len(N) + 0.5))
    if n > 1:
        return N[n-2]
    else:
        return N[0]

或者@ijustlovemath建议的简化:

def percentile(N, P):
    n = max(int(round(P * len(N) + 0.5)), 2)
    return N[n-2]

7
投票

检查scipy.stats模块:

 scipy.stats.scoreatpercentile

2
投票

要计算系列的百分位数,请运行:

from scipy.stats import rankdata
import numpy as np

def calc_percentile(a, method='min'):
    if isinstance(a, list):
        a = np.asarray(a)
    return rankdata(a, method=method) / float(len(a))

例如:

a = range(20)
print {val: round(percentile, 3) for val, percentile in zip(a, calc_percentile(a))}
>>> {0: 0.05, 1: 0.1, 2: 0.15, 3: 0.2, 4: 0.25, 5: 0.3, 6: 0.35, 7: 0.4, 8: 0.45, 9: 0.5, 10: 0.55, 11: 0.6, 12: 0.65, 13: 0.7, 14: 0.75, 15: 0.8, 16: 0.85, 17: 0.9, 18: 0.95, 19: 1.0}

2
投票

启动Python 3.8,标准库附带quantiles函数作为statistics模块的一部分:

from statistics import quantiles

quantiles([1, 2, 3, 4, 5], n=100)
# [0.06, 0.12, 0.18, 0.24, 0.3, 0.36, 0.42, 0.48, 0.54, 0.6, 0.66, 0.72, 0.78, 0.84, 0.9, 0.96, 1.02, 1.08, 1.14, 1.2, 1.26, 1.32, 1.38, 1.44, 1.5, 1.56, 1.62, 1.68, 1.74, 1.8, 1.86, 1.92, 1.98, 2.04, 2.1, 2.16, 2.22, 2.28, 2.34, 2.4, 2.46, 2.52, 2.58, 2.64, 2.7, 2.76, 2.82, 2.88, 2.94, 3.0, 3.06, 3.12, 3.18, 3.24, 3.3, 3.36, 3.42, 3.48, 3.54, 3.6, 3.66, 3.72, 3.78, 3.84, 3.9, 3.96, 4.02, 4.08, 4.14, 4.2, 4.26, 4.32, 4.38, 4.44, 4.5, 4.56, 4.62, 4.68, 4.74, 4.8, 4.86, 4.92, 4.98, 5.04, 5.1, 5.16, 5.22, 5.28, 5.34, 5.4, 5.46, 5.52, 5.58, 5.64, 5.7, 5.76, 5.82, 5.88, 5.94]
quantiles([1, 2, 3, 4, 5], n=100)[49] # 50th percentile (e.g median)
# 3.0

quantiles返回给定分布dist一个n - 1切割点列表,将n分位数区间分开(将dist划分为n连续区间,概率相等):

statistics.quantiles(dist,*,n = 4,method ='exclusive')

n,在我们的例子中(percentiles)是100


1
投票

如果你需要答案是输入numpy数组的成员:

只是补充一点,默认情况下numpy中的百分位函数将输出计算为输入向量中两个相邻条目的线性加权平均值。在某些情况下,人们可能希望返回的百分位数是向量的实际元素,在这种情况下,从v1.9.0起,您可以使用“插值”选项,“低”,“高”或“最近”。

import numpy as np
x=np.random.uniform(10,size=(1000))-5.0

np.percentile(x,70) # 70th percentile

2.075966046220879

np.percentile(x,70,interpolation="nearest")

2.0729677997904314

后者是向量中的实际条目,而前者是边界百分位数的两个向量条目的线性插值

© www.soinside.com 2019 - 2024. All rights reserved.