在该区域内具有统一分布以及边界冲突的统一分布的目标;任何解决方案都将是两者之间的妥协。我用一个附加的参数
alpha
alpha=0
给出了典型的向日葵布置,带有锯齿状的边界:
边界更光滑:
(进一步增加alpha是有问题的:太多的点最终出现在边界上)。
alpha=2
点,其中第三点位于距离边界的距离(索引始于
n
),并且以极角k
sqrt(k-1/2)
k=1
,其中
2*pi*k/phi^2
是黄金比率。例外:最后一点点放置在圆的外边界上,并将其他点的极性半径缩放为解释。极性半径的计算是在函数phi
中完成的。
它在matlab
.中进行了编码。
alpha*sqrt(n)
我的python翻译上也标记了公元。
radius
在@olivelsaword上面建造,这是使用numpy的python实现:
function sunflower(n, alpha) % example: n=500, alpha=2
clf
hold on
b = round(alpha*sqrt(n)); % number of boundary points
phi = (sqrt(5)+1)/2; % golden ratio
for k=1:n
r = radius(k,n,b);
theta = 2*pi*k/phi^2;
plot(r*cos(theta), r*sin(theta), 'r*');
end
end
function r = radius(k,n,b)
if k>n-b
r = 1; % put on the boundary
else
r = sqrt(k-1/2)/sqrt(n-(b+1)/2); % apply square root
end
end
import numpy as np
import matplotlib.pyplot as plt
def sunflower(n: int, alpha: float) -> np.ndarray:
# Number of points respectively on the boundary and inside the cirlce.
n_exterior = np.round(alpha * np.sqrt(n)).astype(int)
n_interior = n - n_exterior
# Ensure there are still some points in the inside...
if n_interior < 1:
raise RuntimeError(f"Parameter 'alpha' is too large ({alpha}), all "
f"points would end-up on the boundary.")
# Generate the angles. The factor k_theta corresponds to 2*pi/phi^2.
k_theta = np.pi * (3 - np.sqrt(5))
angles = np.linspace(k_theta, k_theta * n, n)
# Generate the radii.
r_interior = np.sqrt(np.linspace(0, 1, n_interior))
r_exterior = np.ones((n_exterior,))
r = np.concatenate((r_interior, r_exterior))
# Return Cartesian coordinates from polar ones.
return r * np.stack((np.cos(angles), np.sin(angles)))
# NOTE: say the returned array is called s. The layout is such that s[0,:]
# contains X values and s[1,:] contains Y values. Change the above to
# return r.reshape(n, 1) * np.stack((np.cos(angles), np.sin(angles)), axis=1)
# if you want s[:,0] and s[:,1] to contain X and Y values instead.
if __name__ == '__main__':
fig, ax = plt.subplots()
# Let's plot three sunflowers with different values of alpha!
for alpha in (0, 1, 2):
s = sunflower(500, alpha)
# NOTE: the 'alpha=0.5' parameter is to control transparency, it does
# not have anything to do with the alpha used in 'sunflower' ;)
ax.scatter(s[0], s[1], alpha=0.5, label=f"alpha={alpha}")
# Display as square plot with equal axes and add a legend. Then show the result :)
ax.set_aspect('equal')
ax.legend()
plt.show()
int n = 2000; // count of nodes
Float alpha = 2.; // constant that can be adjusted to vary the geometry of points at the boundary
ArrayList<PVector> vertices = new ArrayList<PVector>();
Float scaleFactor = 200.; // scale points beyond their 0.0-1.0 range for visualisation;
void setup() {
size(500, 500);
// Test
vertices = sunflower(n, alpha);
displayTest(vertices, scaleFactor);
}
ArrayList<PVector> sunflower(int n, Float alpha) {
Double phi = (1 + Math.sqrt(5)) / 2; // golden ratio
Double angle = 2 * PI / Math.pow(phi, 2); // value used to calculate theta for each point
ArrayList<PVector> points = new ArrayList<PVector>();
Long b = Math.round(alpha*Math.sqrt(n)); // number of boundary points
Float theta, r, x, y;
for (int i = 1; i < n + 1; i++) {
r = radius(i, n, b.floatValue());
theta = i * angle.floatValue();
x = r * cos(theta);
y = r * sin(theta);
PVector p = new PVector(x, y);
points.add(p);
}
return points;
}
Float radius(int k, int n, Float b) {
if (k > n - b) {
return 1.0;
} else {
Double r = Math.sqrt(k - 0.5) / Math.sqrt(n - (b+1) / 2);
return r.floatValue();
}
}
void displayTest(ArrayList<PVector> points, Float size) {
for (int i = 0; i < points.size(); i++) {
Float x = size * points.get(i).x;
Float y = size * points.get(i).y;
pushMatrix();
translate(width / 2, height / 2);
ellipse(x, y, 5, 5);
popMatrix();
}
}