用 dplyr 汇总多列? [重复]

问题描述 投票:0回答:5

我在 dplyr 语法上遇到了一些困难。我有一个包含不同变量和一个分组变量的数据框。现在我想使用 R 中的 dplyr 计算每组中每列的平均值。

df <- data.frame(
    a = sample(1:5, n, replace = TRUE), 
    b = sample(1:5, n, replace = TRUE), 
    c = sample(1:5, n, replace = TRUE), 
    d = sample(1:5, n, replace = TRUE), 
    grp = sample(1:3, n, replace = TRUE)
)
df %>% group_by(grp) %>% summarise(mean(a))

这给出了“grp”指示的每个组的“a”列的平均值。

我的问题是:是否可以立即获取每组中每一列的平均值?或者我必须为每一列重复

df %>% group_by(grp) %>% summarise(mean(a))

我想要的是类似的东西

df %>% group_by(grp) %>% summarise(mean(a:d)) # "mean(a:d)" does not work
r dplyr aggregate
5个回答
298
投票

dplyr
(>=1.00) 中,您可以在
across(everything()
中使用
summarise
将函数应用于所有变量:

library(dplyr)

df %>% group_by(grp) %>% summarise(across(everything(), list(mean)))
#> # A tibble: 3 x 5
#>     grp     a     b     c     d
#>   <int> <dbl> <dbl> <dbl> <dbl>
#> 1     1  3.08  2.98  2.98  2.91
#> 2     2  3.03  3.04  2.97  2.87
#> 3     3  2.85  2.95  2.95  3.06

或者,

purrrlyr
包提供相同的功能:

library(purrrlyr)
df %>% slice_rows("grp") %>% dmap(mean)
#> # A tibble: 3 x 5
#>     grp     a     b     c     d
#>   <int> <dbl> <dbl> <dbl> <dbl>
#> 1     1  3.08  2.98  2.98  2.91
#> 2     2  3.03  3.04  2.97  2.87
#> 3     3  2.85  2.95  2.95  3.06

另外不要忘记

data.table
(使用
keyby
对组进行排序):

library(data.table)
setDT(df)[, lapply(.SD, mean), keyby = grp]
#>    grp        a        b        c        d
#> 1:   1 3.079412 2.979412 2.979412 2.914706
#> 2:   2 3.029126 3.038835 2.967638 2.873786
#> 3:   3 2.854701 2.948718 2.951567 3.062678

让我们尝试比较一下性能。

library(dplyr)
library(purrrlyr)
library(data.table)
library(bench)
set.seed(123)
n <- 10000
df <- data.frame(
  a = sample(1:5, n, replace = TRUE), 
  b = sample(1:5, n, replace = TRUE), 
  c = sample(1:5, n, replace = TRUE), 
  d = sample(1:5, n, replace = TRUE), 
  grp = sample(1:3, n, replace = TRUE)
)
dt <- setDT(df)
mark(
  dplyr = df %>% group_by(grp) %>% summarise(across(everything(), list(mean))),
  purrrlyr = df %>% slice_rows("grp") %>% dmap(mean),
  data.table = dt[, lapply(.SD, mean), keyby = grp],
  check = FALSE
)
#> # A tibble: 3 x 6
#>   expression      min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 dplyr        2.81ms   2.85ms      328.        NA     17.3
#> 2 purrrlyr     7.96ms   8.04ms      123.        NA     24.5
#> 3 data.table 596.33µs 707.91µs     1409.        NA     10.3

67
投票

我们可以用

summarize_at
summarize_all
summarize_if
上的
dplyr 0.7.4
来总结。我们可以使用
vars
funs
参数设置多个列和函数,如下代码所示。 funs 公式的左侧分配给汇总变量的后缀。在
dplyr 0.7.4
中,
summarise_each
(和
mutate_each
)已被弃用,因此我们无法使用这些函数。

options(scipen = 100, dplyr.width = Inf, dplyr.print_max = Inf)

library(dplyr)
packageVersion("dplyr")
# [1] ‘0.7.4’

set.seed(123)
df <- data_frame(
  a = sample(1:5, 10, replace=T), 
  b = sample(1:5, 10, replace=T), 
  c = sample(1:5, 10, replace=T), 
  d = sample(1:5, 10, replace=T), 
  grp = as.character(sample(1:3, 10, replace=T)) # For convenience, specify character type
)

df %>% group_by(grp) %>% 
  summarise_each(.vars = letters[1:4],
                 .funs = c(mean="mean"))
# `summarise_each()` is deprecated.
# Use `summarise_all()`, `summarise_at()` or `summarise_if()` instead.
# To map `funs` over a selection of variables, use `summarise_at()`
# Error: Strings must match column names. Unknown columns: mean

您应该更改为以下代码。以下代码均具有相同的结果。

# summarise_at
df %>% group_by(grp) %>% 
  summarise_at(.vars = letters[1:4],
               .funs = c(mean="mean"))

df %>% group_by(grp) %>% 
  summarise_at(.vars = names(.)[1:4],
               .funs = c(mean="mean"))

df %>% group_by(grp) %>% 
  summarise_at(.vars = vars(a,b,c,d),
               .funs = c(mean="mean"))

# summarise_all
df %>% group_by(grp) %>% 
  summarise_all(.funs = c(mean="mean"))

# summarise_if
df %>% group_by(grp) %>% 
  summarise_if(.predicate = function(x) is.numeric(x),
               .funs = funs(mean="mean"))
# A tibble: 3 x 5
# grp a_mean b_mean c_mean d_mean
# <chr>  <dbl>  <dbl>  <dbl>  <dbl>
# 1     1   2.80   3.00    3.6   3.00
# 2     2   4.25   2.75    4.0   3.75
# 3     3   3.00   5.00    1.0   2.00

您还可以拥有多种功能。

df %>% group_by(grp) %>% 
  summarise_at(.vars = letters[1:2],
               .funs = c(Mean="mean", Sd="sd"))
# A tibble: 3 x 5
# grp a_Mean b_Mean      a_Sd     b_Sd
# <chr>  <dbl>  <dbl>     <dbl>    <dbl>
# 1     1   2.80   3.00 1.4832397 1.870829
# 2     2   4.25   2.75 0.9574271 1.258306
# 3     3   3.00   5.00        NA       NA

42
投票

您可以简单地将更多参数传递给

summarise

df %>% group_by(grp) %>% summarise(mean(a), mean(b), mean(c), mean(d))

来源:本地数据框[3 x 5]

  grp  mean(a)  mean(b)  mean(c) mean(d)
1   1 2.500000 3.500000 2.000000     3.0
2   2 3.800000 3.200000 3.200000     2.8
3   3 3.666667 3.333333 2.333333     3.0

7
投票

为了完整起见:使用 dplyr v0.2

ddply
colwise
也会执行此操作:

> ddply(df, .(grp), colwise(mean))
  grp        a    b        c        d
1   1 4.333333 4.00 1.000000 2.000000
2   2 2.000000 2.75 2.750000 2.750000
3   3 3.000000 4.00 4.333333 3.666667

但速度较慢,至少在这种情况下:

> microbenchmark(ddply(df, .(grp), colwise(mean)), 
                  df %>% group_by(grp) %>% summarise_each(funs(mean)))
Unit: milliseconds
                                            expr      min       lq     mean
                ddply(df, .(grp), colwise(mean))     3.278002 3.331744 3.533835
 df %>% group_by(grp) %>% summarise_each(funs(mean)) 1.001789 1.031528 1.109337

   median       uq      max neval
 3.353633 3.378089 7.592209   100
 1.121954 1.133428 2.292216   100

5
投票

所有的例子都很棒,但我想我应该再添加一个来展示如何以“整洁”的格式工作来简化事情。现在数据框采用“宽”格式,这意味着变量“a”到“d”以列表示。要获得“整齐”(或长)格式,您可以使用

gather()
包中的
tidyr
,它将“a”列到“d”列中的变量移入行中。然后使用
group_by()
summarize()
函数来获取每组的平均值。如果您想以宽格式呈现数据,只需额外调用
spread()
函数即可。


library(tidyverse)

# Create reproducible df
set.seed(101)
df <- tibble(a   = sample(1:5, 10, replace=T), 
             b   = sample(1:5, 10, replace=T), 
             c   = sample(1:5, 10, replace=T), 
             d   = sample(1:5, 10, replace=T), 
             grp = sample(1:3, 10, replace=T))

# Convert to tidy format using gather
df %>%
    gather(key = variable, value = value, a:d) %>%
    group_by(grp, variable) %>%
    summarize(mean = mean(value)) %>%
    spread(variable, mean)
#> Source: local data frame [3 x 5]
#> Groups: grp [3]
#> 
#>     grp        a     b        c        d
#> * <int>    <dbl> <dbl>    <dbl>    <dbl>
#> 1     1 3.000000   3.5 3.250000 3.250000
#> 2     2 1.666667   4.0 4.666667 2.666667
#> 3     3 3.333333   3.0 2.333333 2.333333
© www.soinside.com 2019 - 2024. All rights reserved.