我有一个名为 df 的数据框,其中包含 Likert 数据和一个具有 5 个级别的列 var。
我想根据特定顺序对 Likert 和条形图进行排序。例如,我想从上到下对“A,C,D,E,B”进行排序,而不是根据比例之和:
library(tibble)
library(tidyverse)
library(ggplot2)
library(ggstats)
var_levels <- c(LETTERS[1:5])
n = 500
likert_levels = c(
"Very \n Dissatisfied",
"Dissatisfied",
"Neutral",
"Satisfied",
"Very \n Satisfied"
)
df <- tibble(
var = sample(var_levels, n, replace = TRUE),
val1 = sample(likert_levels, n, replace = TRUE),
val2 = sample(likert_levels, n, replace = TRUE)
)
df
df2 = df%>%
pivot_longer(!var, names_to = "Categories", values_to = "likert_values")%>%
select(-Categories)
df2
library(tidyverse)
library(ggstats)
library(patchwork)
# Define the order of 'var' levels
desired_order <- c("A", "C", "D", "E", "B")
# Ensure 'var' is a factor with the specified order
dat <- df |>
mutate(
var = factor(var, levels = desired_order),
across(-var, ~ factor(.x, likert_levels))
) |>
pivot_longer(-var, names_to = "group") |>
count(var, value, group) |>
complete(var, value, group, fill = list(n = 0)) |>
mutate(
prop = n / sum(n),
prop_lower = sum(prop[value %in% likert_levels[1:2]]),
prop_higher = sum(prop[value %in% likert_levels[4:5]]),
.by = c(var, group)
) |>
arrange(group, prop_lower) |>
mutate(
y_sort = paste(var, group, sep = "."),
y_sort = fct_inorder(y_sort)
)
top10 <- dat |>
distinct(group, var, prop_lower) |>
slice_max(prop_lower, n = 10, by = group)
dat <- dat |>
semi_join(top10)
dat_tot <- dat |>
distinct(group, var, y_sort, prop_lower, prop_higher) |>
pivot_longer(-c(group, var, y_sort),
names_to = c(".value", "name"),
names_sep = "_"
) |>
mutate(
hjust_tot = ifelse(name == "lower", 1, 0),
x_tot = ifelse(name == "lower", -1, 1)
)
dat_bar <- dat |>
summarise(
n = sum(n), .by = c(y_sort, group)
)
p1 <- ggplot(dat, aes(y = y_sort, x = prop, fill = value)) +
geom_col(position = position_likert(reverse = FALSE)) +
geom_text(
aes(
label = label_percent_abs(hide_below = .05, accuracy = 1)(prop),
color = after_scale(hex_bw(.data$fill))
),
position = position_likert(vjust = 0.5, reverse = FALSE),
size = 3.5
) +
geom_label(
aes(
x = x_tot,
label = label_percent_abs(accuracy = 1)(prop),
hjust = hjust_tot,
fill = NULL
),
data = dat_tot,
size = 3.5,
color = "black",
fontface = "bold",
label.size = 0,
show.legend = FALSE
) +
scale_y_discrete(labels = \(x) gsub("\\..*$", "", x)) +
scale_x_continuous(
labels = label_percent_abs(),
expand = c(0, .15)
) +
scale_fill_brewer(palette = "BrBG") +
facet_wrap(~group,
scales = "free_y", ncol = 1,
strip.position = "right"
) +
theme_light() +
theme(
legend.position = "bottom",
panel.grid.major.y = element_blank(),
strip.text = element_blank()
) +
labs(x = NULL, y = NULL, fill = NULL)
p2 <- ggplot(dat_bar, aes(y = y_sort, x = n)) +
geom_col() +
geom_label(
aes(
label = label_number_abs(hide_below = .05, accuracy = 1)(n)
),
size = 3.5,
hjust = 1,
fill = NA,
label.size = 0,
color = "white"
) +
scale_y_discrete(labels = \(x) gsub("\\..*$", "", x)) +
scale_x_continuous(
labels = label_number_abs(),
expand = c(0, 0, 0, .05)
) +
facet_wrap(~group,
scales = "free_y", ncol = 1,
strip.position = "right"
) +
theme_light() +
theme(
legend.position = "bottom",
panel.grid.major.y = element_blank()
) +
labs(x = NULL, y = NULL, fill = NULL)
# Combine the plots
p1 + p2 +
plot_layout(
guides = "collect") &
theme(legend.position = "bottom")
问题是 df 是原始数据框,df2 是附加数据框。将这两者结合起来绘制原始条形图和附加的 Likert 图。两者都按顺序从上到下排序“A、C、D、E、B”。 我怎样才能在 R 中做到这一点?
根据给定的代码,您可以使用
y_sort = factor(var, levels = rev(desired_order))
达到您想要的结果:
library(tidyverse)
library(ggstats)
library(patchwork)
# Define the order of 'var' levels
desired_order <- c("A", "C", "D", "E", "B")
# Ensure 'var' is a factor with the specified order
dat <- df |>
mutate(
var = factor(var, levels = desired_order),
across(-var, ~ factor(.x, likert_levels))
) |>
pivot_longer(-var, names_to = "group") |>
count(var, value, group) |>
complete(var, value, group, fill = list(n = 0)) |>
mutate(
prop = n / sum(n),
prop_lower = sum(prop[value %in% likert_levels[1:2]]),
prop_higher = sum(prop[value %in% likert_levels[4:5]]),
.by = c(var, group)
) |>
arrange(group, prop_lower) |>
mutate(
y_sort = factor(var, levels = rev(desired_order))
)
top10 <- dat |>
distinct(group, var, prop_lower) |>
slice_max(prop_lower, n = 10, by = group)
dat <- dat |>
semi_join(top10)
#> Joining with `by = join_by(var, group, prop_lower)`
dat_tot <- dat |>
distinct(group, var, y_sort, prop_lower, prop_higher) |>
pivot_longer(-c(group, var, y_sort),
names_to = c(".value", "name"),
names_sep = "_"
) |>
mutate(
hjust_tot = ifelse(name == "lower", 1, 0),
x_tot = ifelse(name == "lower", -1, 1)
)
dat_bar <- dat |>
summarise(
n = sum(n), .by = c(y_sort, group)
)
p1 <- ggplot(dat, aes(y = y_sort, x = prop, fill = value)) +
geom_col(position = position_likert(reverse = FALSE)) +
geom_text(
aes(
label = label_percent_abs(hide_below = .05, accuracy = 1)(prop),
color = after_scale(hex_bw(.data$fill))
),
position = position_likert(vjust = 0.5, reverse = FALSE),
size = 3.5
) +
geom_label(
aes(
x = x_tot,
label = label_percent_abs(accuracy = 1)(prop),
hjust = hjust_tot,
fill = NULL
),
data = dat_tot,
size = 3.5,
color = "black",
fontface = "bold",
label.size = 0,
show.legend = FALSE
) +
scale_y_discrete(labels = \(x) gsub("\\..*$", "", x)) +
scale_x_continuous(
labels = label_percent_abs(),
expand = c(0, .15)
) +
scale_fill_brewer(palette = "BrBG") +
facet_wrap(~group,
scales = "free_y", ncol = 1,
strip.position = "right"
) +
theme_light() +
theme(
legend.position = "bottom",
panel.grid.major.y = element_blank(),
strip.text = element_blank()
) +
labs(x = NULL, y = NULL, fill = NULL)
p2 <- ggplot(dat_bar, aes(y = y_sort, x = n)) +
geom_col() +
geom_label(
aes(
label = label_number_abs(hide_below = .05, accuracy = 1)(n)
),
size = 3.5,
hjust = 1,
fill = NA,
label.size = 0,
color = "white"
) +
scale_y_discrete(labels = \(x) gsub("\\..*$", "", x)) +
scale_x_continuous(
labels = label_number_abs(),
expand = c(0, 0, 0, .05)
) +
facet_wrap(~group,
scales = "free_y", ncol = 1,
strip.position = "right"
) +
theme_light() +
theme(
legend.position = "bottom",
panel.grid.major.y = element_blank()
) +
labs(x = NULL, y = NULL, fill = NULL)
# Combine the plots
p1 + p2 +
plot_layout(
guides = "collect"
) &
theme(legend.position = "bottom")